【題目】如圖,已知點A是反比例函數(shù) 的圖象上的一個動點,連接OA,若將線段O A繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達式為

【答案】
【解析】∵點A是反比例函數(shù) 的圖象上的一個動點,設(shè)A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,

∴AC=n,OC=﹣m,
∴∠ACO=∠ADO=90°,
∵∠AOB=90°,
∴∠CAO+∠AOC=∠AOC+∠BOD=90°,
∴∠CAO=∠BOD,
在△ACO與△ODB中,
∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
∴△ACO≌△ODB,
∴AC=OD=n,CO=BD=﹣m,
∴B(n,﹣m),
∵mn=﹣2,
∴n(﹣m)=2,
∴點B所在圖象的函數(shù)表達式為 ,
故答案為:
過A作AC⊥x軸于C,過B作BD⊥x軸于D,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AO=BO,再證明∠ACO=∠ODB,∠CAO=∠BOD,可得出OC=BD,AC=OD,然后求出mn的值即可得出點B所在圖象的函數(shù)解析式。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,一次函數(shù)y=ax+b與二次函數(shù)y=bx2+a的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.

(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外興趣小組活動時,老師提出了如下問題:

1)如圖1中,若,,求邊上的中線的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:將繞點逆時針旋轉(zhuǎn)得到,把、集中在中,利用三角形的三邊關(guān)系可得,則;

2)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在中,邊上的中點,,于點于點,連接

①求證:;

②如圖3,若,探索線段、、之間的等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,∠3+4180°,要證∠1=∠2,請完善證明過程,并在括號內(nèi)填上相應依據(jù):

ADBC(已知)

∴∠l=∠3(   ),

∵∠3+4180°(已知)

BEDF(   ),

      (   )

∴∠1=∠2(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E,F(xiàn),AE,CF分別與BD交于點G和H,且AB=

(1)若tan∠ABE =2,求CF的長;
(2)求證:BG=DH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊上,為邊上一動點,連接關(guān)于所在直線對稱,點分別為的中點,連接并延長交所在直線于點,連接.當為直角三角形時,的長為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】類比思想就是根據(jù)已經(jīng)學習過的知識,類比探究新知識的思想方法.我們在探究矩形、菱形、正方形等問題中的數(shù)量關(guān)系時,經(jīng)常用到類比思想.某數(shù)學興趣小組在數(shù)學課外活動中,研究三角形和正方形的性質(zhì)時,做了如下探究:在中,為直線上一動點(不與重合),以為邊在右側(cè)作正方形連接

1)(觀察猜想)如圖①,當點在線段上時;

的位置關(guān)系為: ;

之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)

2)(數(shù)學思考)如圖②,當點在線段的延長線上時,結(jié)論①②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;

3)(拓展延伸)如圖③,當點在線段的延長線上時,延長于點,連接.若已知請直接寫出的長.(提示: .過)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,地面上小山的兩側(cè)有A,B兩地,為了測量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達C處,此時熱氣球上的人測得CB與AB成70°角,請你用測得的數(shù)據(jù)求A,B兩地的距離AB長.(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)

查看答案和解析>>

同步練習冊答案