【題目】如圖,已知在平面直角坐標(biāo)系中,點(diǎn)軸上,點(diǎn)、軸上,,,,點(diǎn)的坐標(biāo)是,

1)求三個(gè)頂點(diǎn)、、的坐標(biāo);

2)連接、,并用含字母的式子表示的面積();

3)在(2)問的條件下,是否存在點(diǎn),使的面積等于的面積?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1A0,-4),B-4,0),C6,0);(22a-44-2a,詳見解析;(3)存在,點(diǎn)P的坐標(biāo)為(-6,12)或(-6,-8

【解析】

1)根據(jù)三角形面積公式得到OA2=8,解得OA=4,則OB=OA=4OC=BC-OB=6,然后根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
2)分類討論:當(dāng)點(diǎn)P在在直線AB上方即a2;當(dāng)點(diǎn)P在直線AB下方,即a2;利用面積的和與差求解;
3)先計(jì)算出SABC=20,利用(2)中的結(jié)果得到方程,然后分別求出a的值,從而確定P點(diǎn)坐標(biāo).

解:(1)∵SABO=OA×OB,
OA=OB

OA2=8,解得OA=4
OB=OA=4,
OC=BC-OB=10-4=6,
A0,-4),B-4,0),C6,0);
2)當(dāng)點(diǎn)P在第二象限,直線AB的上方,即a2,作PHy軸于H,如圖,

SPAB=SAOB+S梯形BOHP-SPAH=8+4+6×a-×6×a+4=2a-4;
當(dāng)點(diǎn)P在直線AB下方,即a2,作PHx軸于H,如圖,

SPAB=S梯形OHPA-SPBH-SOAB=-a+4×6-×6-4×-a-8=4-2a;

3SABC=×10×4=20
當(dāng)2a-4=20,
解得a=12
此時(shí)P點(diǎn)坐標(biāo)為(-612);
當(dāng)4-2a=20,
解得a=-8
此時(shí)P點(diǎn)坐標(biāo)為(-6,-8).
綜上所述,點(diǎn)P的坐標(biāo)為(-6,12)或(-6-8).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上的點(diǎn)表示的數(shù)是5,點(diǎn)表示的數(shù)是,這兩點(diǎn)都以每秒一個(gè)單位長度的速度在數(shù)軸上各自朝某個(gè)方向運(yùn)動(dòng),且兩點(diǎn)同時(shí)開始運(yùn)動(dòng):

1)若點(diǎn)向右運(yùn)動(dòng),則兩秒后點(diǎn)表示的數(shù)是_______;(直接寫結(jié)果)

2)若點(diǎn)向左運(yùn)動(dòng),點(diǎn)向右運(yùn)動(dòng),當(dāng)這兩點(diǎn)相遇時(shí)點(diǎn)表示的數(shù)是多少?

3)同時(shí)運(yùn)動(dòng)3秒后,這兩點(diǎn)相距多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AC=BC=5,AB=6,點(diǎn)E是線段AB上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)F是線段AC上的動(dòng)點(diǎn),連接CE、EF,若在點(diǎn)E、點(diǎn)F的運(yùn)動(dòng)過程中,始終保證∠CEF=∠B.當(dāng)以點(diǎn)C為圓心,以CF為半徑的圓與AB相切時(shí),則BE的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P為∠AOB的角平分線上的一點(diǎn),點(diǎn)D在邊OA上.在邊OB上取一點(diǎn)E,使得PE=PD.

1)用圓規(guī)作出所有符合條件的點(diǎn)E;

2)寫出∠OEP與∠ODP的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的三個(gè)方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個(gè)方程有實(shí)根,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,C=90°,,,若動(dòng)點(diǎn)P從點(diǎn)C開始,的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

點(diǎn)P出發(fā)2秒后,CPBP的長.

t滿足什么條件時(shí)的值或取值范圍,為直角三角形?

另有一點(diǎn)Q,從點(diǎn)C開始,的路徑運(yùn)動(dòng),且速度為每秒2cm,P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)當(dāng)t為何值時(shí),直線PQ的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,陰影部分是由5個(gè)小正方形組成的一個(gè)直角圖形,請(qǐng)用3種方法分別在下圖方格內(nèi)添涂黑二個(gè)小正方形,使陰影部分成為軸對(duì)稱圖形.

2)如圖,在長度為1個(gè)單位長度的小正方形組成的正方形中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

①在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△ABC;

②△ABC的面積為____________;

③在直線l上找一點(diǎn)P,使PBPC的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

解答下列問題:

1)如果AB=AC∠BAC=90

當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為

當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖丙,中的結(jié)論是否仍然成立,為什么?

2)如果AB≠AC,∠BAC≠90,點(diǎn)D在線段BC上運(yùn)動(dòng).

試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

3)若ACBC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線ABx軸、y軸分別相交于點(diǎn)A、B,將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到AC,連接BC,將ABC沿射線BA平移,當(dāng)點(diǎn)C到達(dá)x軸時(shí)運(yùn)動(dòng)停止.設(shè)平移距離為m,平移后的圖形在x軸下方部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示(其中0<m≤a,a<m≤b時(shí),函數(shù)的解析式不同).

(1)填空:ABC的面積為 ;

(2)求直線AB的解析式;

(3)求S關(guān)于m的解析式,并寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案