【題目】如圖,正方形ABCD的兩條對角線AC、BD相交于點(diǎn)O,延長BA至點(diǎn)F,使BF=AC,連接DF,DBA的平分線交DF于點(diǎn)P,連接PA.PO,如果AB=,那么PA2+PO2=______

【答案】3-

【解析】根據(jù)正方形的性質(zhì)即可得出BD=AC=AB=2,結(jié)合BF=AC即可得出點(diǎn)PDF的中點(diǎn),根據(jù)正方形的性質(zhì)可得出點(diǎn)OBD的中點(diǎn)以及∠BAD=90°,由此即可得出PO為△DFB的中位線,結(jié)合BF的長度即可求出PO的長度,再根據(jù)直角三角形斜邊中線等斜邊的一半結(jié)合勾股定理即可得出PA的長度,將其代入PA2+PO2中即可得出結(jié)論.

∵四邊形ABCD為正方形,BF=AC,AB=,∴BF=AC=AB=2,BC=AD,

∴AF=BF-AB=2-,BF=BD.∵BP平分∠DBA, ∴點(diǎn)PDF的中點(diǎn).

∵四邊形ABCD為正方形,對角線AC、BD相交于點(diǎn)O,

∴∠BAD=90°,點(diǎn)OBD中點(diǎn), ∴PO為△DFB的中位線,

∴PO=BF=1, ∵∠DAF=180°-∠BAD=90°,點(diǎn)PDF的中點(diǎn),

∴PA=DF=, ∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點(diǎn)EAD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.

(1)判斷這個(gè)一元二次方程的根的情況;

(2)若等腰三角形的一邊長為3,另兩條邊的長恰好是這個(gè)方程的兩個(gè)根,求這個(gè)等腰三角形的周長及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)AB的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問:(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算: +(π﹣1)0﹣( 1
(2)化簡:(m+2)(m﹣2)﹣(2﹣m)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程﹣1的步驟如下:

(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的計(jì)算依據(jù)有:去括號法則.等式性質(zhì)一.③等式性質(zhì)二.合并同類項(xiàng)法則.請選擇排序完全正確的一個(gè)選項(xiàng)( 。

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A( ,0),B(3 ,2),C(0,2).動(dòng)點(diǎn)D以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)沿OC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E以每秒2個(gè)單位的速度從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動(dòng).過點(diǎn)E作EF⊥AB,交BC于點(diǎn)F,連接DA、DF.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求∠ABC的度數(shù);
(2)當(dāng)t為何值時(shí),AB∥DF;
(3)設(shè)四邊形AEFD的面積為S.①求S關(guān)于t的函數(shù)關(guān)系式;
②若一拋物線y=﹣x2+mx經(jīng)過動(dòng)點(diǎn)E,當(dāng)S<2 時(shí),求m的取值范圍(寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】細(xì)心觀察下圖,認(rèn)真分析各式,然后解答問題.

()2+1=2,S1

()2+1=3,S2

()2+1=4,S3.

(1)請用含n(n是正整數(shù))的等式表示上述式子的變化規(guī)律;

(2)推算出OA10的長;

(3)求出S12+S22+S32+S102的值.

查看答案和解析>>

同步練習(xí)冊答案