已知二次函數(shù)(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是
A.a(chǎn)c>0 
B.當(dāng)x>1時,y隨x的增大而減小
C.b﹣2a=0
D.x=3是關(guān)于x的方程(a≠0)的一個根
D。
由二次函數(shù)y=ax2+bx+c的圖象可得:拋物線開口向上,即a>0,
拋物線與y軸的交點在y軸負(fù)半軸,即c<0,
∴ac<0,選項A錯誤。
由函數(shù)圖象可得:當(dāng)x<1時,y隨x的增大而減。划(dāng)x>1時,y隨x的增大而增大,選項B錯誤。
∵對稱軸為直線x=1,∴,即2a+b=0,選項C錯誤。。。
由圖象可得拋物線與x軸的一個交點為(﹣1,0),又對稱軸為直線x=1,
∴拋物線與x軸的另一個交點為(3,0),則x=3是方程的一個根,選項D正確。。
故選D。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線(a≠0)經(jīng)過點A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點M.

(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標(biāo);
(3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、A、N為頂點的三角形與△MAO相似?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面xOy中,拋物線C1的頂點為A(-1,4),且過點B(-3,0)

(1)寫出拋物線C1與x軸的另一個交點M的坐標(biāo);
(2)將拋物線C1向右平移2個單位得拋物線C2,求拋物線C2的解析式;
(3)寫出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示,已知直線與x軸、y軸分別交于A、C兩點,拋物線經(jīng)過A、C兩點,點B是拋物線與x軸的另一個交點,當(dāng)時,y取最大值.

(1)求拋物線和直線的解析式;
(2)設(shè)點P是直線AC上一點,且,求點P的坐標(biāo);
(3)若直線與(1)中所求的拋物線交于M、N兩點,問:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,請說明理由;
②猜想當(dāng)∠MON>900時,a的取值范圍(不寫過程,直接寫結(jié)論).
(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M,N兩點間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與 軸交于A(,0),B(2,0),且與軸交于點C.


(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)點P是x軸下方的拋物線上一動點, 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點P的坐標(biāo);
(3) 在此拋物線上是否存在點Q,使得以A,C,B,Q四點為頂點的四邊形是直角梯形?若存在, 求出Q點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù) (a、m為常數(shù),且a¹0)。
(1)求證:不論a與m為何值,該函數(shù)的圖像與x軸總有兩個公共點;
(2)設(shè)該函數(shù)的圖像的頂點為C,與x軸交于A、B兩點,與y軸交于點D。
①當(dāng)△ABC的面積等于1時,求a的值:
②當(dāng)△ABC的面積與△ABD的面積相等時,求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)中,其函數(shù)與自變量之間的部分對應(yīng)值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)當(dāng)x=-1時,y的值為      ;
(2)點A(,)、B(,)在該函數(shù)的圖象上,則當(dāng)時,的大小關(guān)系是      ;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式:      ;
(4)設(shè)點P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函數(shù)的圖象上,問:當(dāng)m<-3時,y1、y2、y3的值一定能作為同一個三角形三邊的長嗎?為什么?=】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點, A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.

(1)填空:點C的坐標(biāo)是     ,b=   ,c=    
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

有下列4個命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點P(x,y)的坐標(biāo)x,y滿足x2+y2+2x﹣2y+2=0,若點P也在的圖象上,則k=﹣1.
④若實數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案