(2013•安順)如圖,有兩顆樹,一顆高10米,另一顆高4米,兩樹相距8米.一只鳥從一顆樹的樹梢飛到另一顆樹的樹梢,問小鳥至少飛行(  )
分析:根據(jù)“兩點之間線段最短”可知:小鳥沿著兩棵樹的樹梢進行直線飛行,所行的路程最短,運用勾股定理可將兩點之間的距離求出.
解答:解:如圖,設(shè)大樹高為AB=10m,
小樹高為CD=4m,
過C點作CE⊥AB于E,則EBDC是矩形,
連接AC,
∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,
在Rt△AEC中,AC=
AE2+EC2
=10m,
故選B.
點評:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安順)如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年重慶市綦江縣中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2013•安順)如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2013•安順)如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省玉溪市中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

(2013•安順)如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案