如圖,已知拋物線(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).
(1)b= ,點(diǎn)B的橫坐標(biāo)為 (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過點(diǎn)A作直線AE∥BC,與拋物線交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為
(2,0),當(dāng)C,D,E三點(diǎn)在同一直線上時,求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線上的一動點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有 個.
解:(1);。
(2)在中,令x=0,得y=c,
∴點(diǎn)C的坐標(biāo)為(c,0)。
設(shè)直線BC的解析式為,
∵點(diǎn)B的坐標(biāo)為(-2 c,0),∴。
∵,∴。
∴直線BC的解析式為。
∵AE∥BC,∴可設(shè)直線AE的解析式為。
∵點(diǎn)A的坐標(biāo)為(-1,0),∴,。
∴直線AE的解析式為。
由解得。
∴點(diǎn)E的坐標(biāo)為。
∵點(diǎn)C的坐標(biāo)為,點(diǎn)D的坐標(biāo)為(2,0),∴直線CD的解析式為。
∵點(diǎn)C,D,E三點(diǎn)在同一直線上,∴。
∴,解得(舍去)。
∴。
∴拋物線的解析式為。
(3)①設(shè)點(diǎn)P的坐標(biāo)為,
∵點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,-2),
∴AB=5,OC=2,直線CB的解析式為。
當(dāng)時,,
∵,∴。
當(dāng)時,過點(diǎn)P作PG⊥x軸于點(diǎn)G,交BC于點(diǎn)F,
∴點(diǎn)F的坐標(biāo)為。
∴。
∴。
∴當(dāng)x=2時,! 。
綜上所述,S的取值范圍為。
②11。
【解析】
試題分析:(1)將點(diǎn)A的坐標(biāo)為(-1,0)代入得。
∴。
令,解得。
∴點(diǎn)B的橫坐標(biāo)為。
(2)求出直線BC的解析式,從而求出直線AE的解析式,得到點(diǎn)E的坐標(biāo)為,由點(diǎn)C,D,E三點(diǎn)在同一直線上,將代入直線CD的解析式即可求出c,由(1)求出b,從而得到拋物線的解析式。
(3)①分和兩種情況討論。
②當(dāng)時,,且S為整數(shù),對應(yīng)的x有4個;
當(dāng)時,,,且S為整數(shù),對應(yīng)的x有7個(時只有1個)。
∴若△PBC的面積S為整數(shù),則這樣的△PBC共有11個。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com