(2005•遵義)如圖,A、B兩點表示位于一池塘兩端的兩棵樹,為了測量A、B兩點間的距離,某同學先在地面上取一個可以直接到達A、B點C,確定AC、BC的中點D、E,并測得DE的長是15米,則A、B的距離為( 。
分析:先根據(jù)題意得出DE是△ABC的中位線,再根據(jù)三角形中位線定理即可得出結論.
解答:解:∵D、E分別是線段AC、BC的中點,
∴AB=2DE=2×15=30(米).
故選A.
點評:本題考查的是三角形中位線定理,即三角形的中位線平行于第三邊,并且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2005•遵義)如圖,把一個邊長為6cm的正三角形剪成一個最大的正六邊形,則這個正六邊形的周長為
12
12
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2005•遵義)如圖,⊙O中,弦AB與直徑CD相交于點P,且PA=4,PB=6,PD=2,則⊙O的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2005•遵義)如圖,在直角坐標系中,經過點A(0,2),B(2,0)和原點O(0,0)三點作⊙C,點P為⊙C上任一點(點P與點O、B不重合),則∠OPB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2005•遵義)如圖,點P在x正半軸上,以P為圓心的⊙P與x軸交于A、B兩點,與y軸交于C、D兩點,⊙P的半徑是4,CD=4
3

(1)過點C作⊙P的切線交x軸于點E,求點E的坐標;
(2)若
S△CBO
S△PCO
=n
,求滿足下列二個條件的拋物線的解析式:
①過點P、E;
②拋物線的頂點到x軸的距離為n.

查看答案和解析>>

同步練習冊答案