【題目】如圖,將長方形紙片ABCD折疊,使點C與點A重合,折痕EF分別與ABDC交于點E和點F

1)試寫出圖中若干相等的線段和銳角(分別寫兩對);

2)證明:△ADF≌△ABE

【答案】1)∠D=∠B,∠B=∠B′;ADCB,CBAB′;(2)證明見解析

【解析】

1)根據(jù)折疊的性質(zhì)和矩形的性質(zhì)可得答案;

2)根據(jù)折疊的性質(zhì)和矩形的性質(zhì)可得∠D=∠B′90°ADAB′,根據(jù)同角的余角相等可得∠DAF=∠B′AE,然后利用ASA即可證明三角形全等.

解:(1)由題意可得:∠D=∠B,∠B=∠B′ADCB,CBAB′;

2)∵四邊形ABCD是長方形,

∴∠D=∠B=∠B′90°,ADCBAB′,

∵∠DAF+EAF90°,∠B′AE+EAF90°,

∴∠DAF=∠B′AE,

ADFAB′E中,

,

∴△ADF≌△AB′EASA).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2+mx+1,當(dāng)0x≤2時的函數(shù)值總是非負(fù)數(shù),則實數(shù)m的取值范圍為(  )

A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4m≥﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,E、F分別是BC、CD上的點.且BE+DF=EF.試求∠EAF度數(shù).

小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得求出∠EAF度數(shù),他求出的∠EAF度數(shù)應(yīng)是 .請你根據(jù)他的思路完成論證過程.

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+D=180°E,F分別是BCCD上的點,試探究當(dāng)∠EAF與∠BAD滿足什么關(guān)系時有BE+DF=EF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著退耕還林政策的進(jìn)一步落實,三崗村從2015年底到2017年底林地面積變化如圖所示,則2016,2017這兩年三崗村林地面積年平均增長的百分率為( 。

A. 7% B. 10% C. 11% D. 21%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDBN,DN分別平分∠ABM,∠MDC,試問∠M與∠N之間的數(shù)量關(guān)系如何?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,BC=12AD=8,ADBC邊上的高.若P,Q分別是ADAC上的動點,則PC+PQ的最小值是( )

A.6B.8C.9.6D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB8,射線BGAB,P為射線BG上一點,連接AP,APCPAP=CP,連接AC,PD平分∠APC,C、D與點BAP兩側(cè),在線段DP取一點E,使∠EAP=∠BAP,連接CE與線段AB相交于點F(F與點A、B不重合).

(1)求證:AEP≌△CEP;

(2)判斷CFAB的位置關(guān)系,并說明理由;

(3)求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,求證:BE=AF;

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

同步練習(xí)冊答案