【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱這樣的方程為“倍根方程”.例如,一元二次方程x2﹣6x+8=0的兩個(gè)根是x1=2和x2=4,則方程x2﹣6x+8=0是“倍根方程”.
(1)根據(jù)上述定義,一元二次方程2x2+x﹣1=0 (填“是”或“不是”)“倍根方程”.
(2)若一元二次方程x2﹣3x+c=0是“倍根方程”,則c= .
(3)若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,則a、b、c之間的關(guān)系為 .
(4)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2﹣5mn+n2的值.
【答案】(1)不是 ;(2)2;(3)2b2=9ac;(4)0.
【解析】
(1)根據(jù)“倍根方程”的定義即可得出結(jié)論;
(2)根據(jù)倍根方程的定義以及根與系數(shù)的關(guān)系即可求出答案;
(3)設(shè)x=m與x=2m是方程ax2+bx+c=0的解,然后根據(jù)根與系數(shù)的關(guān)系即可求出答案;
(4)根據(jù)定義可求出n=4m或n=m,代入原式后即可求出答案.
解:(1)2x2+x﹣1=0,
(2x﹣1)(x+1)=0,
解得x1=和x2=﹣1,
故一元二次方程2x2+x﹣1=0 不是(填“是”或“不是”)“倍根方程”;
(2)由題意可知:x=m與x=2m是方程x2﹣3x+c=0的解,
∴2m+m=3,2m2=c,
∴m=1,c=2;
(3)設(shè)x=m與x=2m是方程ax2+bx+c=0的解,
∴2m+m=,2m2=,
∴消去m得:2b2=9ac;
(4)由(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,
且該方程的兩根分別為x=2和x=,
∴=4或=1,即n=4m或n=m,
當(dāng)n=4m時(shí),
原式=(m﹣n)(4m﹣n)=0
當(dāng)n=m時(shí),
原式=(m﹣n)(4m﹣n)=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)口袋里裝著白、紅、黑三種顏色的小球(除顏色外形狀大小完全相同),其中白球3個(gè)、紅球2個(gè)、黑球1個(gè).
(1)隨機(jī)從袋中取出一個(gè)球,求取出的球是黑球的概率;
(2)若取出的第一只球是紅球,不將它放回袋里,從袋中余下的球中再隨機(jī)地取出1個(gè),這時(shí)取出的球是黑球的概率是多少?
(3)若取出一個(gè)球,將它放回袋中,從袋中再隨機(jī)地取出一個(gè)球,兩次取出的球都是白球的概率是多少?(用列表法或樹狀圖計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(m-1)x2-x-2=0,
(1)若x=-1是方程的一個(gè)根,求m的值及另一個(gè)根;
(2)當(dāng)m為何值時(shí)方程有兩個(gè)不同的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,在DC的延長(zhǎng)線上取一點(diǎn)E,連接OE交BC于點(diǎn)F.已知AB=4,BC=6,CE=2,則CF的長(zhǎng)等于( )
A. 1 B. 1.5 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)的圖像與矩形AOBC的邊AC,BC分別交于點(diǎn)E、F,點(diǎn)C的坐標(biāo)為(8,6),將△CEF沿EF翻折,C點(diǎn)恰好落在OB上的點(diǎn)D處,則k的值為( )
A.B.6C.12D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校社會(huì)實(shí)踐小組為了測(cè)量大雁塔的高度,在地面上C處垂直于地面豎立了高度為2米的標(biāo)桿CD,此時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,大雁塔的塔尖點(diǎn)B正好在同一直線上,側(cè)得EC=4米,將標(biāo)桿CD向后移到點(diǎn)G處,此時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,大雁塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測(cè)得FG=6米,GC=53米,請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算大雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】城市中“打車難”一直是人們關(guān)注的一個(gè)社會(huì)熱點(diǎn)問題.近幾年來,“互聯(lián)網(wǎng)+”戰(zhàn)略與傳統(tǒng)出租車行業(yè)深度融合,“優(yōu)步”、“滴滴出行”等打車軟件就是其中典型的應(yīng)用,名為“數(shù)據(jù)包絡(luò)分析”(簡(jiǎn)稱DEA)的一種效率評(píng)價(jià)方法,可以很好地優(yōu)化出租車資源配置,為了解出租車資源的“供需匹配”,北京、上海等城市對(duì)每天24個(gè)時(shí)段的DEA值進(jìn)行調(diào)查,調(diào)查發(fā)現(xiàn),DEA值越大,說明匹配度越好.在某一段時(shí)間內(nèi),北京的DEA值y與時(shí)刻t的關(guān)系近似滿足函數(shù)關(guān)系(a,b,c是常數(shù),且≠0),如圖記錄了3個(gè)時(shí)刻的數(shù)據(jù),根據(jù)函數(shù)模型和所給數(shù)據(jù),當(dāng)“供需匹配”程度最好時(shí),最接近的時(shí)刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com