【題目】如圖,在⊿ ABC中,AE是中線,AD是角平分線,AF是高,∠ B=30°, ∠ C=80°, BE=3,AF=2,填空:(1)AB= _________. (2)∠ BAD=________(3)∠ DAF=__________(4)S⊿ AEC=____________.
【答案】4 35° 25° 3
【解析】
熟悉三角形的角平分線、中線、高的概念:
三角形的一個(gè)角的平分線和對(duì)邊相交,頂點(diǎn)和交點(diǎn)間的線段叫三角形的角平分線;
連接頂點(diǎn)和對(duì)邊中點(diǎn)的線段叫三角形的中線;
三角形的高即從頂點(diǎn)向?qū)呉咕,頂點(diǎn)和垂足間的線段.
根據(jù)概念,運(yùn)用幾何式子表示.
(1)∵∠B=30°,AF是高,
∴AB=2AF=2×2=4;
(2)∵∠B=30°,∠C=80°,
∴∠BAC=70°,
∴∠BAD=35°;
(3)∵∠BAF=60°,
∴∠DAF=25°;
(4)S△AEC=S△ABE,
故答案為:4;35°;25°;S△ABE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于實(shí)數(shù)p,q,我們用符號(hào)min{p,q}表示p,q兩數(shù)中較小的數(shù),如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,則x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知平面直角坐標(biāo)系中,點(diǎn),滿足.
(1)求的面積;
(2)將線段經(jīng)過水平、豎直方向平移后得到線段,已知直線經(jīng)過點(diǎn)的橫坐標(biāo)為5.
①求線段平移過程中掃過的面積;
②請說明線段的平移方式,并說明理由;
③如圖2,線段上一點(diǎn),直接寫出之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)如圖1,△ABC中,∠BAC=90°,AB=AC,AE是過A點(diǎn)的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:BD=DE+CE.
(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí)(BD<CE),其余條件不變,問BD與DE、CE的關(guān)系如何?請予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,則PD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D.依此類推,則旋轉(zhuǎn)第2015次后,得到的等腰直角三角形的直角頂點(diǎn)P2016的坐標(biāo)為( )
A.(4033,﹣1)
B.(4031,﹣1)
C.(4033,1)
D.(4031,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,﹣3),反比例函數(shù) 的圖象經(jīng)過點(diǎn)C.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△PAD的面積恰好等于正方形ABCD的面積,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一個(gè)圖形通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1可以得到,請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式;
(2)根據(jù)整式乘法的運(yùn)算法則,通過計(jì)算驗(yàn)證上述等a式;
(3)若a+b+c=l0,ab+ac+bc=35,利用得到的結(jié)論,求.的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市路橋公司決定對(duì)A、B兩地之間的公路進(jìn)行改造,并由甲工程隊(duì)從A地向B地方向修筑,乙工程隊(duì)從B地向A地方向修筑.已知甲工程隊(duì)先施工2天,乙工程隊(duì)再開始施工,乙工程隊(duì)施工幾天后因另有任務(wù)提前離開,余下的任務(wù)由甲工程隊(duì)單獨(dú)完成,直到公路修通.甲、乙兩個(gè)工程隊(duì)修公路的長度y(米)與施工時(shí)間x(天)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙工程隊(duì)每天修公路240米;②甲工程隊(duì)每天修公路120米;③甲比乙多工作6天;④A、B兩地之間的公路總長是1680米.其中正確的說法有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com