【題目】已知第三象限的點Px,y)滿足,

1)求點P的坐標(biāo);

2)①點Px軸的距離為_______;

②把點P向右平移m個單位后得到P1,則點P1x軸的距離為______

【答案】1P(-5,3);(2① 3 ;② 3 

【解析】

1)求出x、y的值,并根據(jù)點P在第三象限內(nèi),得出點P的坐標(biāo);

2Px軸的距離即點P縱坐標(biāo)絕對值的大;

先得出點P1的坐標(biāo),然后得出點P1x軸的距離.

解:(1,

x=±5

y=±3

P(x,y)在第三象限,

x=5,y=3

P(5,3)

2P(53)

Px軸的距離為:

將點P向右平移m個單位后,點P1(m53)

P1x軸的距離為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=3,CDEF,試說明∠1=4.請將過程填寫完整.

解:∵∠1=3,

又∠2=3(_______),

∴∠1=____,

____________(_______),

又∵CDEF,

AB_____,

∴∠1=4(兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結(jié)論時,需添加輔助線,則作法不正確的是( 。

A. 作∠APB的平分線PCAB于點C

B. 過點PPCAB于點CAC=BC

C. AB中點C,連接PC

D. 過點PPCAB,垂足為C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點DE分別在邊AB、AC上,且AD=AE,連接BECD,交于點F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;

(2)求證:過點A、F的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的說理過程補充完整

已知如圖DEBC,ADE=∠EFC求證∠1=∠2

證明DEBC(已知)

∴∠ADE= ( 。

∵∠ADE=∠EFC(已知)

= (  )

DBEF ( 。

∴∠1=∠2 (  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每個小方格是邊長為1個單位長度的小正方形,菱形OABC在平面直角坐標(biāo)系的位置如圖所示.

(1)以O(shè)為位似中心,在第一象限內(nèi)將菱形OABC放大為原來的2倍得到菱形OA1B1C1 , 請畫出菱形OA1B1C1 , 并直接寫出點B1的坐標(biāo);
(2)將菱形OABC繞原點O順時針旋轉(zhuǎn)90°菱形OA2B2C2 , 請畫出菱形OA2B2C2 , 并求出點B旋轉(zhuǎn)到點B2的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長最小時,∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,點軸上兩點,其中,點都在軸上,在射線上(不與點重合),,連結(jié)

1)求、的坐標(biāo);

2)如圖,若軸正半軸,在線段上,當(dāng)時,求證:為等邊三角形;(提示:連結(jié)

3)當(dāng)時,在圖中畫出示意圖,設(shè),若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點A在y軸上,頂點D在反比例函數(shù)y= (x>0)的圖象上,已知點B的坐標(biāo)是( , ),則k的值為( )

A.4
B.6
C.8
D.10

查看答案和解析>>

同步練習(xí)冊答案