【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2﹣4x+3;(2);(3)存在.點F的坐標(biāo)為(2,﹣1)或(0,3)或(4,3).
【解析】
(1)由點B、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;
(2)設(shè)出點M的坐標(biāo)以及直線BC的解析式,由點B、C的坐標(biāo)利用待定系數(shù)法即可求出直線BC的解析式,結(jié)合點M的坐標(biāo)即可得出點N的坐標(biāo),由此即可得出線段MN的長度關(guān)于m的函數(shù)關(guān)系式,再結(jié)合點M在x軸下方可找出m的取值范圍,利用二次函數(shù)的性質(zhì)即可解決最值問題;
(3)討論:當(dāng)以AB為對角線,利用EA=EB和四邊形AFBE為平行四邊形得到四邊形AFBE為菱形,則點F也在對稱軸上,即F點為拋物線的頂點,所以F點坐標(biāo)為(-1,-4);當(dāng)以AB為邊時,根據(jù)平行四邊形的性質(zhì)得到EF=AB=4,則可確定F的橫坐標(biāo),然后代入拋物線解析式得到F點的縱坐標(biāo).
解:(1)將點B(3,0)、C(0,3)代入拋物線y=x2+bx+c中,
得: ,
解得:.
故拋物線的解析式為y=x2﹣4x+3.
(2)設(shè)點M的坐標(biāo)為(m,m2﹣4m+3),設(shè)直線BC的解析式為y=kx+3,
把點B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=﹣1,
∴直線BC的解析式為y=﹣x+3.
∵MN∥y軸,
∴點N的坐標(biāo)為(m,﹣m+3).
∵拋物線的解析式為y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線的對稱軸為x=2,
∴點(1,0)在拋物線的圖象上,
∴1<m<3.
∵線段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,
∴當(dāng)m=時,線段MN取最大值,最大值為.
(3)存在.點F的坐標(biāo)為(2,﹣1)或(0,3)或(4,3).
當(dāng)以AB為對角線,如圖1,
∵四邊形AFBE為平行四邊形,EA=EB,
∴四邊形AFBE為菱形,
∴點F也在對稱軸上,即F點為拋物線的頂點,
∴F點坐標(biāo)為(2,﹣1);
當(dāng)以AB為邊時,如圖2,
∵四邊形AFBE為平行四邊形,
∴EF=AB=2,即F2E=2,F(xiàn)1E=2,
∴F1的橫坐標(biāo)為0,F(xiàn)2的橫坐標(biāo)為4,
對于y=x2﹣4x+3,
當(dāng)x=0時,y=3;
當(dāng)x=4時,y=16﹣16+3=3,
∴F點坐標(biāo)為(0,3)或(4,3).
綜上所述,F點坐標(biāo)為(2,﹣1)或(0,3)或(4,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2-2ax+c(a≠0)的圖象與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)寫出該二次函數(shù)的對稱軸和頂點坐標(biāo);
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸交于A、C兩點(點A在點C的左側(cè)),與y軸交于點B,且OA=OB.
(1)求線段AC的長度;
(2)若點P在拋物線上,點P位于第二象限,過P作PQ⊥AB,垂足為Q.已知PQ=,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角∠CAB的度數(shù);
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點P(1,4)、Q(m,n)在函數(shù)y=(k>0)的圖象上,當(dāng)m>1時,過點P分別作x軸、y軸的垂線,垂足為點A、B;過點Q分別作x軸、y軸的垂線,垂足為點C、D,QD交PA于點E,隨著m的增大,四邊形ACQE的面積( )
A. 增大 B. 減小
C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊抓住商機,購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他各項費用80元.
銷售單價x(元) | 3.5 | 5.5 |
銷售量y(袋) | 280 | 120 |
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知點A是雙曲線y=kx-1(k>0)上的一個動點,連AO并延長交另一分支于點B,以AB為邊作等邊△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=mx-1(m<0)上運動,則m與k的關(guān)系是( )
A. m= -kB. m=kC. m= -2kD. m= -3k
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在宣傳“民族團(tuán)結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中所給信息,解答下列問題:
(1)本次調(diào)查的學(xué)生共有_____人;
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學(xué)生,請估計選擇“唱歌”的學(xué)生有多少人?
(4)七年一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機選出兩名同學(xué)參加學(xué)校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com