【題目】推理填空:
如圖所示,已知∠1 = ∠2,∠B = ∠C,可推得AB∥CD,
理由如下:
∵∠1 = ∠2(已知),且∠1 = ∠4(_____________________),
∴∠2 = ∠4(等量代換).
∴CE∥BF(__________________________).
∴∠_____= ∠3(________________________)
又∵∠B = ∠C(已知),
∴∠3= ∠B(等量代換),
∴AB∥CD(_____________________________).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系 中的點(diǎn),給出如下定義:記點(diǎn)到軸的距離為,到軸的距離為若≤,則稱為點(diǎn)的“引力值”;若,則稱為點(diǎn)的“引力值”.特別地,若點(diǎn)在坐標(biāo)軸上,則點(diǎn)的“引力值”為0.
例如,點(diǎn)P(-2,3)到軸的距離為3 ,到軸的距離為2 ,因?yàn)?/span>2<3,所以點(diǎn)的“引力值”為2.
(1)①點(diǎn)的“引力值”為 ;②若點(diǎn)的“引力值”為2,則的值為 ;
(2)若點(diǎn)C在直線上,且點(diǎn)C的:“引力值”為2,求點(diǎn)C的坐標(biāo);
(3)已知點(diǎn)M是以D(3,4)為圓心,半徑為2的圓上的一個(gè)動(dòng)點(diǎn),那么點(diǎn)M的“引力值”的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是等邊三角形,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),是以為邊的等邊三角形,過點(diǎn)作的平行線,分別交射線于點(diǎn),連接.
(1)如圖(a)所示,當(dāng)點(diǎn)在線段上時(shí),
①求證:;
②探究:四邊形是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)在的延長線上時(shí),
①第(1)題中所求證和探究的兩個(gè)結(jié)論是否仍然成立?(直接寫出,不必說明理由)
②當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連結(jié)BE、CE.
(1)若a=5,AC=13,求b.
(2)若a=5,b=10,當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長.
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過程中,使得△ABE與△BCE相似時(shí),求a、b應(yīng)滿足什么條件,并求出此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(3,2),將線段AB平移后得到線段CD,若點(diǎn)A的對(duì)應(yīng)點(diǎn)C(2,﹣1),則點(diǎn)B的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為( 。
A.(4,1)B.(5,3)C.(5,1)D.(2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)﹣2≤x≤1時(shí),二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實(shí)數(shù)m的值為( )
A.﹣
B. 或﹣
C.2或﹣
D.2或﹣ 或﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學(xué)進(jìn)行的推理,請(qǐng)你將彬彬同學(xué)的推理過程補(bǔ)充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內(nèi)錯(cuò)角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(,0),B(,0),且、滿足,現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)請(qǐng)直接寫出C,D兩點(diǎn)的坐標(biāo).
(2)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合) 的值是否發(fā)生變化?并說明理由.
(3)在坐標(biāo)軸上是否存在一點(diǎn)M,使三角形MBC的面積與三角形ACD的面積相等?若存在直接寫出點(diǎn)M的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)長8 厘米,寬6厘米的長方形中,剪下一個(gè)最大的圓,這個(gè)圓的面積是( )平方厘米.
A.18.84B.28.26C.25.12D.50.24
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com