【題目】探測氣球甲從海拔處出發(fā),與此同時,探測氣球乙從海拔處出發(fā).圖中的分別表示甲、乙兩個氣球所在位置的海拔(單位:)與上升時間(單位:)之間的關系.

1)求的函數(shù)解析式;

2)探測氣球甲從出發(fā)點上升到海拔處的過程中,是否存在某一時刻使得探測氣球甲、乙位于同一高度?請說明理由.

【答案】1st+6t≥0);(2)探測氣球甲從出發(fā)點上升到海拔16m處的過程中,當上升15min時探測氣球甲、乙位于同一高度,見解析

【解析】

1)設l2的解析式為sk2t+bk2≠0),根據t0時,s6、當t5時,s8直接列方程組,求解即可;

(2)先根據題意求出的解析式,聯(lián)立l1和l2,求出此時的t值,經驗證滿足題意,即可求解本題.

1)解:由題可設l2的解析式為sk2t+bk2≠0

因為當t0時,s6、當t5時,s8,

代入得,

解得,

所以l2st+6t≥0);

2)解:由題可設l1sk1tk1≠0),

因為當t5時,s4

代入可得l1stt≥0

當二者處于同一高度時,

t+6t,

解得t15,

此時s12,

即在15min時,二者處于同一高度12m;

因為12m16m,

所以探測氣球甲從出發(fā)點上升到海拔16m處的過程中,當上升15min時,探測氣球甲、乙位于同一高度;

答:探測氣球甲從出發(fā)點上升到海拔16m處的過程中,當上升15min時探測氣球甲甲、乙位于同一高度.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀念品.經調查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據規(guī)定:紀念品售價不能超過批發(fā)價的2.5倍.

1)當每個紀念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca0a、b、c為常數(shù))與x軸交于AC兩點,與y軸交于B點,A(﹣6,0),C1,0),B0,).

1)求該拋物線的函數(shù)關系式與直線AB的函數(shù)關系式;

2)已知點Mm,0)是線段OA上的一個動點,過點Mx軸的垂線l,分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?

3)在(2)問條件下,當△BDE恰妤是以DE為底邊的等腰三角形時,動點M相應位置記為點M',將OM'繞原點O順時針旋轉得到ON(旋轉角在0°到90°之間);

①探究:線段OB上是否存在定點PP不與OB重合),無論ON如何旋轉,始終保持不變,若存在,試求出P點坐標:若不存在,請說明理由;

②試求出此旋轉過程中,(NANB)的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為x m.

(1)設垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD的兩條對角線AC、BD互相平分.添加下列條件,一定能判定四邊形ABCD為菱形的是( 。

A.ABD=∠BDCB.ABD=∠BACC.ABD=∠CBDD.ABD=∠BCA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知半圓⊙O的直徑AB10,弦CDAB,且CD8E為弧CD的中點,點P在弦CD上,聯(lián)結PE,過點EPE的垂線交弦CD于點G,交射線OB于點F

1)當點F與點B重合時,求CP的長;

2)設CPx,OFy,求yx的函數(shù)關系式及定義域;

3)如果GPGF,求△EPF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點AC,與AB交于點D

1)求拋物線的函數(shù)解析式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQCP,連接PQ,設CPm,CPQ的面積為S

①求S關于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為(  )

A. B. 2 C. D. 2

查看答案和解析>>

同步練習冊答案