【題目】如圖,EFABFCDABD,點AC邊上,且∠1=2=

(1)判斷DGBC的位置關(guān)系,并加以證明;

(2)若∠AGD=,試求∠DCG的度數(shù).

【答案】(1)DG//BC,理由見解析;(2)DCG=15°.

【解析】

1)平行,先由已知條件證明EFCD,所以∠2=DCE,又因為∠1=2,所以∠1=DCE,即可證明DGBC;

(2) 因為DGBC,根據(jù)平行線的性質(zhì)得出∠AGD=ACB=65°,即可求出答案.

證明:(1)∵EFABF,CDABD,
∴∠BFE=BDC=90°,
EFCD;

∴∠2=DCE,
∵∠1=2,
∴∠1=DCE,
DGBC
2)解:由(1)得:DGBC,

∴∠AGD=ACB=65°,
EFCD,∠2=50°
∴∠DCB=2=50°,
∴∠DCG=65°-50°=15°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉(zhuǎn)得到ABC,MBC的中點,PAB的中點,連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要用12米長的木條,做一個有一條橫擋的矩形窗戶(如圖),怎樣設(shè)計窗口的高和寬的長度,才能使這個窗戶透進的光線最多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是邊長3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點P到達點B時,P、Q兩點停止運動.設(shè)點P的運動時間為t(s),解答問題:當(dāng)t為何值時,△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“漢十”高速鐵路襄陽段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.

(1)請畫出平移后的△DEF.

(2)若連接ADCF,則這兩條線段之間的關(guān)系是   .

(3)利用網(wǎng)格點畫出△ABCBC邊上的高AM(M為垂足).

(4)滿足三角形ABP的面積等于三角形ACB的面積的格點P (不和C重合).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D為∠BAC邊AC上一點,點O為邊AB上一點,AD=DO.以O(shè)為圓心,OD長為半徑作半圓,交AC于另一點E,交AB于點F、G,連接EF.若∠BAC=22°,則∠EFG=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(﹣3,2),B0,4),C0,2).

1)將ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的A1B1C1,平移ABC,若點A的對應(yīng)點A2的坐標為(0,﹣4),畫出平移后對應(yīng)的A2B2C2

2)若將A1B1C1繞某一點旋轉(zhuǎn)可以得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是腰長為1的等腰三角形,以的斜邊為直角邊,畫第二個等腰三角形,再以的斜邊為直角邊,畫第三個等腰三角形,…,以此類推,則第2019個等腰三角形的斜邊長是___________。

查看答案和解析>>

同步練習(xí)冊答案