【題目】如圖(1)是某公園里的一種健身器材,其側(cè)面示意圖如圖(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點(diǎn)D到地面的高度是多少?
【答案】D到地面的高度為(10+)cm
【解析】
過A作AF⊥BC,垂足為F,過點(diǎn)D作DH⊥AF,垂足為H.先得出AF的長,再利用相似三角形的判定與性質(zhì)得出AH的長即可得出答案.
解:過A作AF⊥BC,垂足為F,過點(diǎn)D作DH⊥AF,垂足為H.
∵AF⊥BC
∴BF=FC=BC=40cm.
根據(jù)勾股定理,得AF=(cm),
∵∠DHA=∠DAC=∠AFC=90°,
∴∠DAH+∠FAC=90°,∠C+∠FAC=90°,
∴∠DAH=∠C,
∴△DAH∽△ACF,
∴ ∴,
∴AH=10cm.
∴HF=(10+)cm ,
答:D到地面的高度為(10+)cm.
故答案為:D到地面的高度為(10+)cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCO的頂點(diǎn)B、C在第二象限,點(diǎn)A(﹣3,0),反比例函數(shù)y=(k<0)圖象經(jīng)過點(diǎn)C和AB邊的中點(diǎn)D,若∠B=α,則k的值為( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是y軸上的一個(gè)動(dòng)點(diǎn).
(1)請(qǐng)直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當(dāng)點(diǎn)P在直線AB上方時(shí),請(qǐng)求出△PAB面積的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)是否存在以P,Q,A,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時(shí)在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時(shí)的速度前往救援,問巡邏艇能否在1小時(shí)內(nèi)到達(dá)漁船C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=30°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△DEC,點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段CB的延長線上,連接AD,若∠ADE=90°,則∠BAD=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知:△ABD∽△ACE,∠ABD=∠ACE=90°,連接DE,O是DE的中點(diǎn)。
(1)連接OC,OB 求證:OB=OC;
(2)將△ACE繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,過點(diǎn)E作EM∥AD交射線AB于點(diǎn)M,交射線AC于點(diǎn)N,連接DM,BC. 若DE的中點(diǎn)O恰好在AB上。
①求證:△ADM∽△AEN
②求證:BC∥AD
③若AC=BD=3,AB=4,△ACE繞頂點(diǎn)A旋轉(zhuǎn)的過程中,是否存在四邊形ADME矩形的情況?如果存在,直接寫出此時(shí)BC的值,若不存在說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱軸上是否存在一點(diǎn)M,使△ANM的周長最�。舸嬖冢�(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c的部分圖象,A(1,0),B(0,3).
(1)求拋物線的解析式;
(2)若拋物線與x軸的另一個(gè)交點(diǎn)是C點(diǎn),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,直至得C17.若P(50,m)在第17段拋物線C17上,則m=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com