【題目】如圖,∠AOB=30°,點M、N分別是射線OA、OB上的動點,OP平分∠AOB,且OP=6,△PMN的周長最小值為

【答案】6
【解析】解:分別作點P關(guān)于OA、OB的對稱點C、D,連接CD,分別交OA、OB于點M、N,連接OP、OC、OD、PM、PN.
∵點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點P關(guān)于OB的對稱點為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=6.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=6,
所以答案是:6

【考點精析】解答此題的關(guān)鍵在于理解軸對稱-最短路線問題的相關(guān)知識,掌握已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中.

(1)作出△ABC 關(guān)于y軸對稱的△A1B1C1 , 并寫出△A1B1C1三個頂點的坐標(biāo):A1),B1),C1);
(2)直接寫出△ABC的面積為
(3)在x軸上畫點P,使PA+PC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.

(1)有月租費的收費方式是(填①或②),月租費是元;


(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):如圖1,在ABC中,∠C=90°,分別以ACBC為邊向外側(cè)作正方形ACDE和正方形BCFG

1ABCDCF面積的關(guān)系是______________;(請在橫線上填寫相等不等

2拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請結(jié)合圖2給出證明;若不成立,請說明理由;

3解決問題:如圖3,在四邊形ABCD中,ACBD,且ACBD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,運用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.

1

2

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線,經(jīng)過A10)、B70)兩點,交y軸于D點,以AB為邊在x軸上方作等邊△ABC

1)求拋物線的解析式;

2)在x軸上方的拋物線上是否存在點M,是SABM=SABC?若存在,請求出點M的坐標(biāo);若不存在,請說明理由;

3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AFBE相交于點P

①若CE=BF,試猜想AFBE的數(shù)量關(guān)系及∠APB的度數(shù),并說明理由;

②若AF=BE,當(dāng)點EA運動到C時,請直接寫出點P經(jīng)過的路徑長(不需要寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yax2經(jīng)過點(11)和(﹣1,n),則n的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.

(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60°,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=(1-mx+2,函數(shù)值yx的增大而減小,則m的取值范圍是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+6x+5的頂點坐標(biāo)是________________

查看答案和解析>>

同步練習(xí)冊答案