多項(xiàng)式2x4-3x3+ax2+7x+b能被x2+x-2整除,則=( )
A.-2
B.-
C.
D.0
【答案】分析:由于x2+x-2=(x+2)(x-1),而多項(xiàng)式2x4-3x3+ax2+7x+b能被x2+x-2整除,則2x4-3x3+ax2+7x+b能被(x+2)(x-1)整除.運(yùn)用待定系數(shù)法,可設(shè)商是A,則2x4-3x3+ax2+7x+b=A(x+2)(x-1),
則x=-2和x=1時(shí),2x4-3x3+ax2+7x+b=0,分別代入,得到關(guān)于a、b的二元一次方程組,
解此方程組,求出a、b的值,進(jìn)而得到的值.
解答:解:∵x2+x-2=(x+2)(x-1),
∴2x4-3x3+ax2+7x+b能被(x+2)(x-1)整除,
設(shè)商是A.
則2x4-3x3+ax2+7x+b=A(x+2)(x-1),
則x=-2和x=1時(shí),右邊都等于0,所以左邊也等于0.
當(dāng)x=-2時(shí),2x4-3x3+ax2+7x+b=32+24+4a-14+b=4a+b+42=0  ①
當(dāng)x=1時(shí),2x4-3x3+ax2+7x+b=2-3+a+7+b=a+b+6=0         ②
①-②,得
3a+36=0,
∴a=-12,
∴b=-6-a=6.
==-2.
故選A.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法在因式分解中的應(yīng)用.在因式分解時(shí),一些多項(xiàng)式經(jīng)過(guò)分析,可以斷定它能分解成某幾個(gè)因式,但這幾個(gè)因式中的某些系數(shù)尚未確定,這時(shí)可以用一些字母來(lái)表示待定的系數(shù).由于該多項(xiàng)式等于這幾個(gè)因式的乘積,根據(jù)多項(xiàng)式恒等的性質(zhì),兩邊對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)該相等,或取多項(xiàng)式中原有字母的幾個(gè)特殊值,列出關(guān)于待定系數(shù)的方程(或方程組),解出待定字母系數(shù)的值,這種因式分解的方法叫作待定系數(shù)法.本題關(guān)鍵是能夠通過(guò)分析得出x=-2和x=1時(shí),原多項(xiàng)式的值均為0,從而求出a、b的值.本題屬于競(jìng)賽題型,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、多項(xiàng)式2x4-3x3+ax2+7x+b能被x2+x-2整除,則a:b的值是
-2:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

多項(xiàng)式2x4-3x3+ax2+7x+b能被x2+x-2整除,則
a
b
=(  )
A、-2
B、-
1
2
C、
1
2
D、0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知多項(xiàng)式2x4-3x3+ax2+7x+b能被x2+x-2整除,則
ab
的值是
-2
-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知多項(xiàng)式2x4-3x3+ax2+7x+b能被x2+x-2整除,則
a
b
的值是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案