【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為

【答案】3
【解析】解:∵AF⊥BF, ∴∠AFB=90°,
∵AB=10,D為AB中點,
∴DF= AB=AD=BD=5,
∴∠ABF=∠BFD,
又∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠CBF=∠DFB,
∴DE∥BC,
∴AE=EC,
∴DE= BC=8,
∴EF=DE﹣DF=3,

【考點精析】認真審題,首先需要了解直角三角形斜邊上的中線(直角三角形斜邊上的中線等于斜邊的一半),還要掌握三角形中位線定理(連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,BC=5,過點AAEABAB=AE,過點E分別作EFAC,EDBC,分別交ACBC的延長線與點F、D

(1)求證:ABC≌△EAF

(2)若FC=7,求四邊形ABDE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個有50個奇數(shù)排成的數(shù)陣,用如圖所示的框去框住四個數(shù),并求出這四個數(shù)的和,在下列給出的備選答案中,有可能是這四個數(shù)的和的是(  )

A. 114 B. 122 C. 220 D. 84

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】華聯(lián)超市用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)

進價(元/件)

22

30

售價(元/件)

29

40

(1)該商場購進甲、乙兩種商品各多少件?

(2)該超市將購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備在七年級舉辦百科知識競賽,在張貼規(guī)則宣傳之后,為了解學生對這次競賽的了解程度,在全校400名七年級學生中隨機抽取部分學生迸行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅統(tǒng)計圖.

(1)抽取調(diào)查的學生人數(shù)是_____;

(2)扇形統(tǒng)計圖中了解對應的圓心角α的度數(shù)是_____;

(3)全校七年級學生中對這次競賽非常了解的大約有 人。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數(shù)m進行分組統(tǒng)計,結果如表所示:

組號

分組

頻數(shù)

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形圖來描述,求分數(shù)在8≤m<9內(nèi)所對應的扇形圖的圓心角大。
(3)將在第一組內(nèi)的兩名選手記為:A1、A2 , 在第四組內(nèi)的兩名選手記為:B1、B2 , 從第一組和第四組中隨機選取2名選手進行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面的統(tǒng)計圖表示某體校射擊隊甲、乙兩名隊員射擊比賽的成績.根據(jù)統(tǒng)計圖中的信息可得,下列結論正確的是( 。

A. 甲隊員成績的平均數(shù)比乙隊員的大

B. 甲隊員成績的方差比乙隊員的大

C. 甲隊員成績的中位數(shù)比乙隊員的大

D. 乙隊員成績的方差比甲隊員的大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠現(xiàn)有甲種布料42米,乙種布料30米.現(xiàn)計劃用這兩種布料生產(chǎn)M,N兩種型號的校服共40件,已知做一件M型號的校服需要用甲種布料0.8米,乙種布料1.1米.做一件N型號的校服需用甲種布料1.2米,乙種布料0.5米,按要求生產(chǎn)M,N兩種型號的校服,有哪幾種生產(chǎn)方案?請你設計出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解
如圖(1),在正多邊形A1A2A3…An的邊A2A3上任取一不與點A2重合的點B2 , 并以線段A1B2為邊在線段A1A2的上方作以正多邊形A1B2B3…Bn , 把正多邊形A1B2B3…Bn叫正多邊形A1A2…An的準位似圖形,點A3稱為準位似中心.

特例論證
(1)如圖(2)已知正三角形A1A2A3的準位似圖形為正三角形A1B2B3 , 試證明:隨著點B2的運動,∠B3A3A1的大小始終不變.

(2)如圖(3)已知正方形A1A2A3A4的準位似圖形為正方形A1B2B3B4 , 隨著點B2的運動,∠B3A3A4的大小始終不變?若不變,請求出∠B3A3A4的大;若改變,請說明理由.

(3)在圖(1)的情況下:
①試猜想∠B3A3A4的大小是否會發(fā)生改變?若不改變,請用含n的代數(shù)式表示出∠B3A3A4的大。ㄖ苯訉懗鼋Y果);若改變,請說明理由.
①∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠BnAnA1= (用含n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案