【題目】閱讀思考,完成下列填空.
問題提出:
如圖,圖①是一張由三個邊長為1的小正方形組成的形紙片.圖②是張的方格紙(的方格紙指邊長分別為的長方形,被分成個邊長為1的小正方形,其中,且為正整數(shù)).把圖①放置在圖②中.使它恰好蓋住圖②中的三個小正方形,共有多少種不同的放置方法?
問題探究;
探究一:把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形,如圖③,顯然有4種不同的放置方法.
探究二:把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形.如圖④,在的方格紙中,共可以找到2個位置不同的方格,依據(jù)探究一的結(jié)論可知,把圖①放置在的方格紙中.使它恰好蓋住其中的三個小正方形,共有_____種不同的放置方法.
探究三:把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形,如圖⑤,在的方格紙中,共可以找到_______個位置不同的方格,依據(jù)探究一的結(jié)論可知,把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形,共有________種不同的放置方法.
探究四:把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形,如圖⑥,在的方格紙中,共可以找到_______個位置不同的方格,依據(jù)探究一的結(jié)論可知,把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形共有________種不同的放置方法.
……
問題解決:
把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形,共有_________種不同的放置方法.
【答案】探究二:8;探究三: ;探究四: ;問題解決:
【解析】
對于圖形的變化類的規(guī)律題,首先應(yīng)找出圖形哪些部分發(fā)生了變化,是按什么規(guī)律變化的,通過分析找出各部分的變化規(guī)律后直接利用規(guī)律求解,
解:探究二:
根據(jù)探究一,把圖①放置在的方格紙中.使它恰好蓋住其中的三個小正方形,共有種不同的放置方法;
故答案為:8;
探究三:
根據(jù)探究二,,在的方格紙中,共可以找到個位置不同的方格,根據(jù)探究一的結(jié)論可知,每個的方格紙中,有4種不同的放置方法,所以在的方格紙中共可以找到種不同的放置方法;
故答案為:;;
探究四:
與探究三相比,矩形的寬改變了,邊長為a,有(a-1)個邊長為2的線段,同理,邊長為3,則有3-1=2條邊長為2的線段,所以在的方格紙中,可以找到個位置不同的方格,根據(jù)探究一,在的方格紙中,使它恰好蓋住其中的三個小正方形共有種不同的放置方法;
故答案為:;;
問題解決:
在的方格紙中,共可以找到個位置不同的方格,依照探究一的結(jié)論,把圖①放置在的方格紙中,使它恰好蓋住其中的三個小正方形,共有種不同的放置方法.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點.若DE平分△ABC的周長,則DE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月8日—10日,第六屆翼裝飛行世界錦標(biāo)賽在我市天門山風(fēng)景區(qū)隆重舉行,來自全球11個國家的16名選手參加了激烈的角逐.如圖,某選手從離水平地面1000米高的A點出發(fā)(AB=1000米),沿俯角為的方向直線飛行1400米到達(dá)D點,然后打開降落傘沿俯角為的方向降落到地面上的C點,求該選手飛行的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學(xué)校團(tuán)委在活動啟動之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示.
大賽結(jié)束后一個月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請根據(jù)調(diào)查的信息
(1)活動啟動之初學(xué)生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計大賽后一個月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣4,0),B(2,0),與y軸交于點C(0,4),線段BC的中垂線與對稱軸l交于點D,與x軸交于點F,與BC交于點E,對稱軸l與x軸交于點H.
(1)求拋物線的函數(shù)表達(dá)式;
(2)求點D的坐標(biāo);
(3)點P為x軸上一點,⊙P與直線BC相切于點Q,與直線DE相切于點R.求點P的坐標(biāo);
(4)點M為x軸上方拋物線上的點,在對稱軸l上是否存在一點N,使得以點D,P,M.N為頂點的四邊形是平行四邊形?若存在,則直接寫出N點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依次剪6張正方形紙片拼成如圖示意的圖形,圖形中正方形①的面積為1,正方形②的面積為.
(1)請用含的式子直接寫出正方形⑤的面積;
(2)若正方形⑥與正方形③的面積相等,求正方形④和正方形⑤的面積比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E在BC邊上,且CE︰BC=2︰3,AC與DE相交于點F,若S△EFC=8,則S△CFD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c(bc≠0).
(1)若該拋物線的頂點坐標(biāo)為(c,b),求其解析式;
(2)點A(m,n),B(m+1,n),C(m+6,n)在拋物線y=x2+bx+c上,求△ABC的面積;
(3)在(2)的條件下,拋物線y=x2+bx+c的圖象與x軸交于D(x1,0),E(x2,0)(x1<x2)兩點,且0<x1+x2<3,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,BD平分∠ABC,CD平分∠ACB,BD,CD交于點D,EF過點D交AB于點E,交AC于點F.
(1)如圖1,若EF∥BC,則∠BDE+∠CDF的度數(shù)為 (用含有∠A的代數(shù)式表示);
(2)當(dāng)直線EF繞點D旋轉(zhuǎn)到如圖2所示的位置時,(1)中的結(jié)論是否成立?請說明理由;
(3)當(dāng)直線EF繞點D旋轉(zhuǎn)到如圖3所示的位置時,(1)中的結(jié)論是否成立?若成立,請說明理由;若不成立,請求出∠BDE,∠CDF與∠A之間的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com