【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請你用直尺和圓規(guī)補(bǔ)全這個(gè)輸水管道的圓形截面(保留作圖痕跡);
(2)若這個(gè)輸水管道有水部分的水面寬AB=24cm,水面最深地方的高度為8cm,求這個(gè)圓形截面的半徑.
【答案】(1)如圖所示;見解析;(2)圓形截面的半徑為13cm.
【解析】
(1)運(yùn)用尺規(guī)作圖的步驟和方法即可解答;
(2)作OD⊥AB于D,并延長交⊙O于C,則D為AB的中點(diǎn),則AD=12,設(shè)這個(gè)圓形截面的半徑為xcm,在Rt△AOD中,運(yùn)用勾股定理求出x即可.
(1)如圖所示;
(2)作OD⊥AB于D,并延長交⊙O于C,則D為AB的中點(diǎn),
∵AB=24cm,
∴AD=AB=12.
設(shè)這個(gè)圓形截面的半徑為xcm,
又∵CD=8cm,
∴OD=x﹣8,
在Rt△OAD中,
∵OD2+AD2=OA2,即(x﹣8)2+122=x2,
解得x=13.
∴圓形截面的半徑為13cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1、l2、l3兩兩相交于A、B、C三點(diǎn),它們與y軸正半軸分別交于點(diǎn)D、E、F,若A、B、C三點(diǎn)的坐標(biāo)分別為(1,yA)、(2,yB)、(3,yC),且OD=DE=1,則下列結(jié)論正確的個(gè)數(shù)是( )①EC=3EA,②S△ABC=1,③OF=5,④2yA﹣yA﹣yC=2
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,P是AC上的一點(diǎn),PH⊥AB于點(diǎn)H,以PH為直徑作⊙O,當(dāng)CH與PB的交點(diǎn)落在⊙O上時(shí),AP的值為( 。
A.B.C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)分別為A(0,6)、B(6,6).點(diǎn)Q在線段AB上,以Q為項(xiàng)點(diǎn)的拋物線y=﹣x2+bx+c與y軸交于點(diǎn)D,與x軸的一個(gè)交點(diǎn)為C.設(shè)點(diǎn)Q的橫坐標(biāo)為m,點(diǎn)C的橫坐標(biāo)為n(n>m).
(1)當(dāng)m=0時(shí),求n的值.
(2)求線段AD的長(用含m的式子表示);
(3)點(diǎn)P(2,0)在x軸上,設(shè)△BPD的面積為S,求S與m的關(guān)系式;
(4)當(dāng)△DCQ是以QC為直角邊的直角三角形時(shí),直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動點(diǎn),設(shè)其橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長是6,∠A=60°,E是AD的中點(diǎn),F是AB邊上一個(gè)動點(diǎn),EG=EF且∠GEF=60°,則GB+GC的最小值是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年,國家衛(wèi)生健康委員會和國家教育部在全國開展了兒童青少年近視調(diào)查工作,調(diào)查數(shù)據(jù)顯示,全國兒童青少年近視過半.某校初三學(xué)習(xí)小組為了解本校學(xué)生對自己視力保護(hù)的重視程度,隨機(jī)在校內(nèi)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常重視”“重視”“比較重視”“不重視”四類,并將結(jié)果繪制成下面的兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)圖中信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校共有學(xué)生1000人,請你估計(jì)該校對視力保護(hù)“非常重視”的學(xué)生人數(shù);
(3)對視力“非常重視”的4人有,兩名男生,,兩名女生,若從中隨機(jī)抽取兩人向全校作視力保護(hù)交流,請利用樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點(diǎn)坐標(biāo)為,B點(diǎn)坐標(biāo)為,將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到線段B,則點(diǎn)坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點(diǎn)A作AE⊥CD,AE分別與CD、CB相交于點(diǎn)H、E,AH=2CH.
(1)求sin∠CAH的值;
(2)如果CD=,求BE的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com