【題目】如圖,E為正方形ABCD對(duì)角線BD上的一點(diǎn),且BEBC1

1)求DCE的度數(shù);

2)點(diǎn)PEC上,作PMBDM,PNBCN,求PMPN的值.

【答案】(1225°,(2

【解析】

試題分析:(1)由正方形的性質(zhì)得到,BCD=90°,DBC=45°,推出AB=BE,根據(jù)三角形的內(nèi)角和定理求出BCE=BEC=675°,根據(jù)DCE=DCB-BCE即可求出答案.

2)連接BP,作EFBCF,則EFB=90°,得出BEF是等腰直角三角形,從而求得BF=EF=,然后根據(jù)SBPE+SBPC=SBEC,求得PM+PN=EF,即可求得

試題解析:(1)在正方形ABCD中,BCD=90°DBC=45°,

BE=BC,

AB=BE

∴∠BCE=BEC=180°-DBC=675°,

∴∠DCE=DCB-BCE=90°-675°=225°,

2)連接BP,作EFBCF,則EFB=90°,

∵∠EBF=45°

∴△BEF是等腰直角三角形,

BE=BC=1,

BF=EF=,

PMBDPNBC,

SBPE+SBPC=SBEC,

BEPM+BCPN=BCEF

BE=BC,

PM+PN=EF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校對(duì)學(xué)生的課外閱讀時(shí)間進(jìn)行抽樣調(diào)查,將收集的數(shù)據(jù)分成A、B、C、D、E五組進(jìn)行整理,并繪制成如下的統(tǒng)計(jì)圖表(圖中信息不完整).

組別

閱讀時(shí)間x(時(shí))

人數(shù)

A

0≤x<10

k

B

10≤x<20

100

C

20≤x<30

m

D

30≤x<40

140

E

x≥40

n

請(qǐng)結(jié)合以上信息解答下列問(wèn)題

(1)閱讀時(shí)間分組統(tǒng)計(jì)表中k、m、n的值分別是      、   ;

(2)補(bǔ)全閱讀人數(shù)分組統(tǒng)計(jì)圖”;

(3)若全校有3000名學(xué)生,請(qǐng)估算全校課外閱讀時(shí)間在20小時(shí)以下(不含20小時(shí))的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線上,若正方形CDEF的邊長(zhǎng)為2,則圖中陰影部分的面積為(
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, , 成正比例, 成反比例,并且當(dāng)時(shí), ,當(dāng)時(shí),

)求關(guān)于的函數(shù)關(guān)系式.

)當(dāng)時(shí),求的值.

【答案】;(,

【解析】分析:(1)首先根據(jù)x成正比例, x成反比例,且當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=5,求出 x的關(guān)系式,進(jìn)而求出yx的關(guān)系式,(2)根據(jù)(1)問(wèn)求出的yx之間的關(guān)系式,令y=0,即可求出x的值.

本題解析:

)設(shè), ,

,

∵當(dāng)時(shí), ,當(dāng)時(shí), ,

解得,

關(guān)于的函數(shù)關(guān)系式為

)把代入得,

解得: ,

點(diǎn)睛:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:(1)設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=kx(k為常數(shù),k≠0);(2)把已知條件(自變量與對(duì)應(yīng)值)代入解析式,得到待定系數(shù)的方程;(3)解方程,求出待定系數(shù);(4)寫出解析式.

型】解答
結(jié)束】
24

【題目】如圖,菱形的對(duì)角線、相交于點(diǎn),過(guò)點(diǎn),連接、,連接于點(diǎn).

(1)求證:;

(2)若菱形的邊長(zhǎng)為2, .求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB于點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2 ,求⊙O 的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)EF分別是銳角∠A兩邊上的點(diǎn),AEAF,分別以點(diǎn)E,F為圓心,以AE的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D,連接DE,DF.

(1)請(qǐng)你判斷所畫四邊形的形狀,并說(shuō)明理由;

(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2

請(qǐng)根據(jù)以上圖表,解答下列問(wèn)題:

(1)填空:這次被調(diào)查的同學(xué)共有__人,a+b=__,m=___;

(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);

(3)該校共有學(xué)生1000人,請(qǐng)估計(jì)每月零花錢的數(shù)額x60≤x<120范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別是,,,其中,點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為,是等腰直角三角形.

的值等于______請(qǐng)直接寫出

把點(diǎn)A沿直線翻折,落在點(diǎn)的位置,如果點(diǎn)D在第一象限,是以為腰的等腰直角三角形,那么點(diǎn)D的坐標(biāo)為______;請(qǐng)直接寫出

求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,順德區(qū)政府招商辦準(zhǔn)備引薦本區(qū)的龍頭企業(yè)與 “一帶一路”沿線國(guó)家和地區(qū)合作.負(fù)責(zé)人要為這些企業(yè)制作一批宣傳材料,聯(lián)系了甲、乙兩家設(shè)計(jì)公司,甲公司提出:每份材料收費(fèi)20元,另加設(shè)計(jì)費(fèi)3000元;乙公司提出:每份材料收費(fèi)30元,不收設(shè)計(jì)費(fèi).在其他條件完全相同的情況下,區(qū)招商負(fù)責(zé)人選擇哪間公司比較合算?

查看答案和解析>>

同步練習(xí)冊(cè)答案