如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3).反比例函數(shù)y=(x>0)的函數(shù)圖象經(jīng)過點(diǎn)D,點(diǎn)P是一次函數(shù)y=kx+3-3k(k≠0)的圖象與該反比例函數(shù)圖象的一個公共點(diǎn).

(1)求反比例函數(shù)的解析式;
(2)通過計算,說明一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點(diǎn)C;
(3)對于一次函數(shù)y=kx+3-3k(k≠0),當(dāng)y隨x的增大而增大時,確定點(diǎn)P的橫坐標(biāo)的取值范圍(不必寫出過程).

(1)y=   (2)見解析   (3)<a<3

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系中,一次函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn).
(1)求的值和一次函數(shù)的表達(dá)式;
(2)點(diǎn)B在雙曲線上,且位于直線的下方,若點(diǎn)B的橫、縱坐標(biāo)都是整數(shù),直接寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

設(shè),是任意兩個不等實(shí)數(shù),我們規(guī)定:滿足不等式的實(shí)數(shù)的所有取值的全體叫做閉區(qū)間,表示為. 對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)m≤≤n時,有m≤≤n,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達(dá)式;
(3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,直接寫出實(shí)數(shù), 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)C、點(diǎn)D,與反比例函數(shù)的圖象在第四象限相交于點(diǎn)P,并且PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,已知B(0,-6)且SDBP=27.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)點(diǎn)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿足△DOQ的面積是△COD面積的2倍,直接寫出點(diǎn)Q的坐標(biāo).
(3)若反比例函數(shù)的圖象與△ABP總有公共點(diǎn),直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線y=-2x+4與x軸交于A點(diǎn),與y軸交于B點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求直線y=-2x+4與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=-x+6分別與x軸、y軸交于A、B兩點(diǎn);直線y=x與AB交于點(diǎn)C,與過點(diǎn)A且平行于y軸的直線交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個單位的速度沿軸向左運(yùn)動.過點(diǎn)E作x軸的垂線,分別交直線AB、OD于P、Q兩點(diǎn),以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點(diǎn)E的運(yùn)動時間為t(秒).

(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)0<t<5時,求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)當(dāng)t>0時,直接寫出點(diǎn)(4,)在正方形PQMN內(nèi)部時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)冬季干旱,康平社區(qū)每天需從外地調(diào)運(yùn)飲用水60噸.有關(guān)部門緊急部署,從甲、乙兩水廠調(diào)運(yùn)飲用水到供水點(diǎn),甲廠每天最多可調(diào)出40噸,乙廠每天最多可調(diào)出45噸.從兩水廠運(yùn)水到康平社區(qū)供水點(diǎn)的路程和運(yùn)費(fèi)如下表:

 
到康平社區(qū)供水點(diǎn)的路程(千米)
運(yùn)費(fèi)(元/噸·千米)
甲廠
20
4
乙廠
14
5
(1)若某天調(diào)運(yùn)水的總運(yùn)費(fèi)為4450元,則從甲、乙兩水廠各調(diào)運(yùn)了多少噸飲用水?
(2)設(shè)從甲廠調(diào)運(yùn)飲用水x噸,總運(yùn)費(fèi)為W元,試寫出W關(guān)于x的函數(shù)關(guān)系式,并確定x的取值范圍.怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最省?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司準(zhǔn)備與汽車租賃公司簽訂租車合同.以每月用車路程x(km)計算,甲汽車租賃公司的月租費(fèi)元,乙汽車租賃公司的月租費(fèi)是元.如果、與x之間的關(guān)系如圖所示.

(1)求、與x之間的函數(shù)關(guān)系
(2)怎樣選用汽車租賃比較合算?

查看答案和解析>>

同步練習(xí)冊答案