精英家教網(wǎng)如圖,正方形ABCD的邊長為4,P為對角線AC上一點,且CP=3
2
,PE⊥PB交CD于點E,則PE=
 
分析:作輔助線,連接BE,根據(jù)AB,AP的長和∠BAP的度數(shù),可將BP2表示出來,同理可將PE2,BE2表示出來,在Rt△BPE中,根據(jù)勾股定理BP2+PE2=BE2,可將CE的長求出,進而可將PE的長求出.
解答:精英家教網(wǎng)解:連接BE,設CE的長為x
∵AC為正方形ABCD的對角線,正方形邊長為4,CP=3
2

∴∠BAP=∠PCE=45°,AP=4
2
-3
2
=
2

∴BP2=AB2+AP2-2AB×AP×cos∠BAP=42+(
2
2-2×4×
2
×
2
2
=10
PE2=CE2+CP2-2CE×CP×cos∠PCE=(3
2
2+x2-2x×3
2
×
2
2
=x2-6x+18
BE2=BC2+CE2=16+x2
在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
∴PE2=22-6×2+18=10
∴PE=
10

故答案為
10
點評:本題主要是利用勾股定理進行求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案