【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與y軸交于點C,與反比例函數(shù)y=的圖象交于A,B兩點,過點B作BE⊥x軸于點E,已知A點坐標是(2,4),BE=2.
(1)求一次函數(shù)與反比例函數(shù)的表達式;
(2)連接OA、OB,求△AOB的面積.
【答案】(1)y=x+2, y=;(2)6.
【解析】
(1)根據(jù)點A坐標將反比例函數(shù)表達式求出,再利用反比例函數(shù)求出點B的坐標,最后根據(jù)點A和點B坐標用待定系數(shù)法求出一次函數(shù)表達式;
(2)求出點C坐標,再根據(jù)S△AOB=S△BOC+S△AOC可得結(jié)果.
解:(1)∵點A(2,4)在反比例函數(shù)y=的圖象上,
∴將A(2,4)代入y=中,可得4=,解得m=8,即反比例函數(shù)表達式為y=.
∵BE⊥x軸于點E,且BE=2,即點B縱坐標為-2,而點B在反比例函數(shù)y=的圖象上,
∴將y=-2代入y=,
得-2=,解得x=-4.
即點B坐標為(-4,-2),
∵點A(2,4),B(-4,-2)在一次函數(shù)y=kx+b的圖象上,
∴將A(2,4),B(-4,-2)代入y=kx+b中,得解得
∴一次函數(shù)表達式為y=x+2,反比例函數(shù)表達式為y=;
(2)∵點C為一次函數(shù)y=x+2的圖象與y軸的交點,
∴令x=0,得y=2,即C(0,2).
S△AOB=S△BOC+S△AOC
=·OC·|xB|+·OC·|xA|
=·OC·|xA-xB|
=×2×6
=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)完反比例函數(shù)的圖象及性質(zhì)后,老師給冋學(xué)們留了這樣一道作業(yè)題:“已知點(﹣1,m)和點(2,n)都在反比例函數(shù)y=(k<0)的圖象上,試比較m和n的大。俊币韵率潜虮蛲瑢W(xué)的解題過程:
解:∵在反比例函數(shù)y=中,k<0 ①
∴反比例函數(shù)y=,y隨x的增大而增大 ②
∵ ③
∴ ④
(1)彬彬的解答過程在第 步開始出錯,出錯的原因是 .請你幫助彬彬?qū)懗稣_的解答過程.
(2)若點(﹣6,p)、點(1,q)和點(3,z)也在反比例函數(shù)y=(k<0)的圖象上,直接比較p、q、z的大小 (結(jié)果用“<”連結(jié))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知點E,F,G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,求證四邊形FFG是平行四邊形.根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)根據(jù)上述思路,請你寫出完整的證明過程;
(2)如圖,已知,分別以AB、AC為邊,在BC同側(cè)作等邊三角形ABD和等邊三角形ACE,連接CD,BF.可通過證明△________≌△________,得到;
(3)如圖③,點P是四邊形ABCD內(nèi)一點,且滿足,,,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想四邊形EFGH的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是邊上任意一點(點與點、不重合),以為一直角邊在的外部作,,連接,.
(1)在圖中,若,,現(xiàn)將圖中的繞著點順時針旋轉(zhuǎn)銳角,得到圖,那么線段,之間有怎樣的關(guān)系,寫出結(jié)論,并說明理由;
(2)在圖中,若,,,,現(xiàn)將圖中的繞著點順時針旋轉(zhuǎn)銳角,得到圖,連接、.
①求證:;
②計算:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中拋物線交軸于點,交軸于點,兩點橫坐標為和,點縱坐標為.
求拋物線的解析式;
動點在第四象限且在拋物線上,當(dāng)面積最大時,求點坐標,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:折紙中的數(shù)學(xué)
問題背景
在數(shù)學(xué)活動課上,老師首先將平行四邊形紙片ABCD按如圖①所示方式折疊,使點C與點A重合,點D落到D′處,折痕為EF.這時同學(xué)們很快證得:△AEF是等腰三角形.接下來各學(xué)習(xí)小組也動手操作起來,請你解決他們提出的問題.
操作發(fā)現(xiàn)
(1) “爭先”小組將矩形紙片ABCD按上述方式折疊,如圖②,發(fā)現(xiàn)重疊部分△AEF恰好是等邊三角形,求矩形ABCD的長、寬之比是多少?
實踐探究
(2)“勵志”小組將矩形紙片ABCD沿EF折疊,如圖③,使B點落在AD邊上的B′處;沿B′G折疊,使D點落在D′處,且B′D′過F點.試探究四邊形EFGB′是什么特殊四邊形?
(3)再探究:在圖③中連接BB′,試判斷并證明△BB′G的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張正面分別標有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機抽取一張卡片,求抽到數(shù)字“﹣1”的概率;
(2)隨機抽取一張卡片,然后不放回,再隨機抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點A(﹣2,0)和點B,交y軸于點C(0,2).
(1)求拋物線的函數(shù)表達式;
(2)若點M在拋物線上,且S△AOM=2S△BOC,求點M的坐標;
(3)如圖2,設(shè)點N是線段AC上的一動點,作DN⊥x軸,交拋物線于點D,求線段DN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與y軸交于C點.點A的坐標為(m,3),點B與點A關(guān)于y=x成軸對稱,tan∠AOC=.
(1)求k的值;
(2)直接寫出點B的坐標,并求直線AB的解析式;
(3)P是y軸上一點,且S△PBC=2S△AOB,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com