【題目】如圖,在矩形ABCD中,將△ABD沿AB向下平移使A點到達B點,得到△BEC,下列說法正確的是( )
A. △ACE一定是等腰三角形B. △ACE一定是等邊三角形
C. △ACE一定是銳角三角形D. △ACE不可能是等腰直角三角形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點,C是OB的中點,D是AB上一點,四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知三角形紙片,將紙片折疊,使點與點重合,折痕分別與邊交于點.
(1)畫出直線;
(2)若點關于直線的對稱點為點,請畫出點;
(3)在(2)的條件下,聯(lián)結,如果的面積為2,的面積為,那么的面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,水壩的橫截面是梯形ABCD,∠ABC=37°,壩頂DC=3m,背水坡AD的坡度i(即tan∠DAB)為1:0.5,壩底AB=14m.
(1)求壩高;
(2)如圖2,為了提高堤壩的防洪抗洪能力,防汛指揮部決定在背水坡將壩頂和壩底間時拓寬加固,使得AE=2DF,EF⊥BF,求DF的長.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( )
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=α°,∠COD在∠AOB內(nèi)部且∠COD=β°.
(1)若α,β滿足|α-2β|+(β-60)2=0,則①α= ;
②試通過計算說明∠AOD與∠COB有何特殊關系;
(2)在(1)的條件下,如果作OE平分∠BOC,請求出∠AOC與∠DOE的數(shù)量關系;
(3)若α°,β°互補,作∠AOC,∠DOB的平分線OM,ON,試判斷OM與ON的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A,C在坐標軸上,點P在BC邊上,直線ι1:y=2x+3,直線ι2:y=2x-3
(1)求直線l1與x軸的交點坐標T,直線ι2與AB的交點坐標Q和與x軸的交點坐標G;
(2)判定四邊形ATGQ的形狀并求它的面積;
(3)已知點M在第一象限,且是直線l2上的點,若ΔAPM是等腰直角三角形,求點M坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在數(shù)軸上的位置如圖所示,所對應的點分別為.
(1)在數(shù)軸上表示的點與表示的點之間的距離為 ;由此可得點之間的距離為
(2)化簡:
(3)若的倒數(shù)是它本身,的絕對值的相反數(shù)是,是數(shù)軸上表示的一點,且,求所表示的數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com