【題目】如圖,拋物線軸交于,兩點,與軸交于點,點是拋物線的頂點.

1)求拋物線的解析式.

2)點軸負(fù)半軸上的一點,且,點在對稱軸右側(cè)的拋物線上運動,連接,與拋物線的對稱軸交于點,連接,當(dāng)平分時,求點的坐標(biāo).

3)直線交對稱軸于點,是坐標(biāo)平面內(nèi)一點,請直接寫出全等時點的坐標(biāo).

【答案】1;(2)點的坐標(biāo)為:;(3)若全等,點有四個,坐標(biāo)為,,

【解析】

1)用待定系數(shù)法,直接將代入解析式即可求解.

2)由平分,平行即可求出,繼而得出點坐標(biāo),由直線解析式即可求出與拋物線交點坐標(biāo)即可.

3)由三點的坐標(biāo)可得三邊長,由坐標(biāo)可得,則另兩組邊對應(yīng)相等即可,設(shè)點坐標(biāo)為;利用兩點間距離公式即列方程求解.

1拋物線經(jīng)過,兩點,

,

解得:

拋物線的解析式為:

2)如圖1,設(shè)對稱軸與軸交于點

平分,

,

,

,

,

中,

,

①當(dāng)時,直線解析式為:,

依題意得:

解得:,

在對稱軸右側(cè)的拋物線上運動,

點縱坐標(biāo)

,

②當(dāng)時,直線解析式為:,

同理可求:,

綜上所述:點的坐標(biāo)為:,,

3)由題意可知:,,,

,

,

,

直線經(jīng)過,

直線解析式為,

拋物線對稱軸為,而直線交對稱軸于點,

坐標(biāo)為

,

設(shè)點坐標(biāo)為,

,

,若全等,有兩種情況,

Ⅰ.,,即

解得:,

點坐標(biāo)為,

Ⅱ.,,即

解得:,,

點坐標(biāo)為,

故若全等,點有四個,坐標(biāo)為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為 3 的正方形中, 在射線上, ,連接交射線于點,若沿直線翻折, 落在點

1)如圖1,若點在線段上,求的長;

2)求的值;

3)如果題設(shè)中改為, 其它條件都不變, 試寫出翻折后與正方形公共部分的面積的關(guān)系式及自變量的取值范圍(只要寫出結(jié)論,不需寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線p: 的頂點為C,與x軸相交于A、B兩點(點A在點B左側(cè)),點C關(guān)于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓心O到直線l的距離為d,的半徑為R,若d,R是方程的兩個根,則直線和圓的位置關(guān)系是________;若d,R是方程的兩個根,則________時,直線與圓相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析式是,直線的解析式是,點上,的橫坐標(biāo)為,作于點,點上,以為鄰邊在直線,間作菱形,分別以點,為圓心,以為半徑畫弧得扇形和扇形,記扇形與扇形重疊部分的面積為;延長于點,點上,以,為鄰邊在,間作菱形,分別以點為圓心,以為半徑畫弧得扇形和扇形,記扇形與扇形重疊部分的面積為按照此規(guī)律繼續(xù)作下去,則__.(用含有正整數(shù)的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的童裝,購進時的單價是元.根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是元時,銷售量是件.而銷售單價每降低元,就可多售出件.

求出銷售該品牌童裝獲得的利潤元與銷售單價元之間的函數(shù)關(guān)系式;

若童裝廠規(guī)定該品牌童裝銷售單價不低于元,且商場要完成不少于件的銷售

任務(wù),則商場銷售該品牌童裝獲得的最大利潤是多少元?

如果要使利潤不低于元,那么銷售單價應(yīng)在什么取值范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸、y軸分別交于B、A兩點,與反比例函數(shù)的圖象交于點C,連接CO,過CCDx軸于D,已知tanABO,OB4OD2

1)求直線AB和反比例函數(shù)的解析式;

2)在x軸上有一點E,使CDECOB的面積相等,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1

(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為______;

(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點 O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為(  )

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

同步練習(xí)冊答案