【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2.
(1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.
【答案】(1)B所對(duì)應(yīng)的數(shù)為2;(2)A,B兩點(diǎn)間距離是12個(gè)單位長(zhǎng)度;(3)經(jīng)過4秒或8秒長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.
【解析】
(1)根據(jù)左減右加可求點(diǎn)B所對(duì)應(yīng)的數(shù);
(2)先根據(jù)時(shí)間=路程÷速度,求出運(yùn)動(dòng)時(shí)間,再根據(jù)路程=速度×?xí)r間求解即可;
(3)分兩種情況:運(yùn)動(dòng)后的B點(diǎn)在A點(diǎn)右邊4個(gè)單位長(zhǎng)度;運(yùn)動(dòng)后的B點(diǎn)在A點(diǎn)左邊4個(gè)單位長(zhǎng)度;列出方程求解即可.
解:(1)﹣2+4=2.
故點(diǎn)B所對(duì)應(yīng)的數(shù)為2;
(2)(﹣2+6)÷2=2(秒),
4+(2+2)×2=12(個(gè)單位長(zhǎng)度).
故A,B兩點(diǎn)間距離是12個(gè)單位長(zhǎng)度.
(3)運(yùn)動(dòng)后的B點(diǎn)在A點(diǎn)右邊4個(gè)單位長(zhǎng)度,
設(shè)經(jīng)過x秒長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度,依題意有
2x=12﹣4,
解得x=4;
運(yùn)動(dòng)后的B點(diǎn)在A點(diǎn)左邊4個(gè)單位長(zhǎng)度,
設(shè)經(jīng)過x秒長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度,依題意有
2x=12+4,
解得x=8.
故經(jīng)過4秒或8秒長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司在某市五個(gè)區(qū)投放共享單車供市民使用,投放量的分布及投放后的使用情況統(tǒng)計(jì)如下.
(1)該公司在全市一共投放了 萬輛共享單車;
(2)在扇形統(tǒng)計(jì)圖中,B區(qū)所對(duì)應(yīng)扇形的圓心角為 °;
(3)該公司在全市投放的共享單車的使用量占投放量的85%,請(qǐng)計(jì)算C區(qū)共享單車的使用量并補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
序號(hào) | 1 | 2 | 3 | …… |
x x x x | ||||
x x x | y y y | |||
x x | y y | x x x x | ||
圖形 | y | x x x | y y y | |
x x | y y | x x x x | ||
x x x | y y y | |||
x x x x |
我們把某格中字母和所得到的多項(xiàng)式稱為“特征式多項(xiàng)式”。例如第1格的“特征式多項(xiàng)式”為4x+y。
(1)第3格的“特征式多項(xiàng)式”為________________;
(2)第4格的“特征式多項(xiàng)式”為________________;
(3)第n格的“特征式多項(xiàng)式”為________________;
(4)若第1格的 “特征式多項(xiàng)式”為10,第2格的“特征式多項(xiàng)式”為19,求x、y的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖中網(wǎng)格上按要求畫出圖形,并回答問題:
(1)如果將三角形平移,使得點(diǎn)平移到圖中點(diǎn)位置,點(diǎn)、點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、點(diǎn),請(qǐng)畫出三角形;
(2)畫出三角形關(guān)于點(diǎn)成中心對(duì)稱的三角形.
(3)三角形與三角形______(填“是”或“否”)關(guān)于某個(gè)點(diǎn)成中心對(duì)稱?如果是,請(qǐng)?jiān)趫D中畫出這個(gè)對(duì)稱中心,并記作點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若從 -3,-1,0,1,3這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù)記為a,再?gòu)氖O碌乃膫(gè)數(shù)中任意抽取一個(gè)數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(diǎn)(a,b)落在雙曲線上的概率是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自主服裝品牌設(shè)計(jì)出了一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元.在推廣服裝品牌初期開展促銷活動(dòng),可以同時(shí)向客戶提供兩種優(yōu)惠方案:
方案①買一套西裝送一條領(lǐng)帶;
方案②西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該服裝品牌購(gòu)買西裝20套,領(lǐng)帶條(超過20).
(1)若該客戶按方案①購(gòu)買,需付款_ _____元(用含的式子表示);
若該客戶按方案②購(gòu)買,需付款__ ____元(用含的式子表示);
(2)若=30,通過計(jì)算說明此時(shí)按哪種方案購(gòu)買較為合算?
(3)當(dāng)=30時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方法,并計(jì)算出所需的錢數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)探究:
(1)如圖1,對(duì)折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,同時(shí)得到線段BN,MN.請(qǐng)你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:
拆項(xiàng)法是因式分解中一種技巧較強(qiáng)的方法,它通常是把多項(xiàng)式中的某一項(xiàng)拆成幾項(xiàng),再分組分解,因而有時(shí)需要多次實(shí)驗(yàn)才能成功,例如把分解因式,這是一個(gè)三項(xiàng)式,最高次項(xiàng)是三次項(xiàng),一次項(xiàng)系數(shù)為零,本題既沒有公因式可提取,又不能直接應(yīng)用公式,因而考慮制造分組分解的條件,把常數(shù)項(xiàng)拆成1和3,原式就變成,再利用立方和與平方差先分解,解法如下:
原式
公式:,
根據(jù)上述論法和解法,
(1)因式分解:;
(2)因式分解:;
(3)因式分解:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com