【題目】已知:△ABC是邊長為3的等邊三角形,以BC為底邊作一個頂角為120等腰△BDC.點M、點N分別是AB邊與AC邊上的點,并且滿足∠MDN=60.
(1)如圖1,當(dāng)點D在△ABC外部時,求證:BM+CN=MN;
(2)在(1)的條件下求△AMN的周長;
(3)當(dāng)點D在△ABC內(nèi)部時,其它條件不變,請在圖2中補全圖形,并直接寫出△AMN的周長.
【答案】(1)證明見解析;(2)6;(3)3.
【解析】試題分析:(1)延長AB至F,使BF=CN,連接DF,只要證明△BDF≌△CND,△DMN≌△DMF即可解決問題;
(2)利用(1)中結(jié)論即可解決問題;
(3)延長BD交AC于P,CD于Q,令KP=QM,交AC于P,連接DK.通過證明△BDQ≌△CDP,△MDQ≌△PDK,△MDN≌△KDN證得△AMN的周長=(AB+AC)=3.
試題解析:(1)延長AB至F,使BF=CN,連接DF,
∵△BDC是等腰三角形,且∠BDC=120°
∴∠BCD=∠DBC=30°
∵△ABC是邊長為3的等邊三角形
∴∠ABC=∠BAC=∠BCA=60°
∴∠DBA=∠DCA=90°
在Rt△BDF和Rt△CND中,
∵BF=CN,DB=DC
∴△BDF≌△CND
∴∠BDF=∠CDN,DF=DN
∵∠MDN=60°
∴∠BDM+∠CDN=60°
∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM為公共邊
∴△DMN≌△DMF,
∴MN=MF,
∵MF=BM+BF=MN+CN,
∴MN=BM+CN.
(2)∵MN=BM+CN,
∴△AMN的周長是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.
(3)延長BD交AC于P,CD于Q,令KP=QM,交AC于P,連接DK.
∵△BDC是等腰三角形,且∠BDC=120°
∴BD=CD,∠DBC=∠DCB=30°,∠BDQ=∠CDP=60°
又∵△ABC等邊三角形
∴∠ABC=∠ACB=60°
∴∠MBD=∠PCD=30°,CQ⊥AB,BP⊥AC,
∴AQ=BQ=AB=,AP=PC=AC=,
在△BDQ和△CDP中,
,
∴△BDQ≌△CDP(ASA),
∴BQ=PC,QD=PD,
∵CQ⊥AB,BP⊥AC,
∴∠MQD=∠DPK=90°,
在△MDQ與△PDK中,
,
∴△MDQ≌△PDK(SAS),
∴∠QDM=∠PDK,DM=DK,
∵∠BDQ=60°∠MDN=60°,
∴∠QDM+∠PDN=60°,
∴∠PDK+∠PDN=60°,
即∠KDN=60°,
在△MDN與△KDN中,
,
∴△MDN≌△KDN(SAS),
∴MN=KN=NP+PK,
∴△AMN的周長=AM+AN+MN=AM+AN+NP+PK=AM+AN+NP+QM=AQ+AP=+=3
故△AMN的周長為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店去年8月底購進了一批文具1160件,預(yù)計在9月份進行試銷.購進價格為每件10元.若售價為12元/件,則可全部售出.若每漲價0.1元.銷售量就減少2件.
(1)求該文具店在9月份銷售量不低于1100件,則售價應(yīng)不高于多少元?
(2)由于銷量好,10月份該文具進價比8月底的進價每件增加20%,該店主增加了進貨量,并加強了宣傳力度,結(jié)果10月份的銷售量比9月份在(1)的條件下的最低銷售量增加了m%,但售價比9月份在(1)的條件下的最高售價減少m%.結(jié)果10月份利潤達到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30,點M、N分別是射線OB、OA上的動點,點P為∠AOB內(nèi)一點,且OP=8,則△PMN的周長的最小值=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
①2x2﹣4x﹣7=0(配方法);
②4x2﹣3x﹣1=0(公式法);
③(x+3)(x﹣1)=5;
④(3y﹣2)2=(2y﹣3)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與坐標(biāo)軸分別交于A、B兩點,已知點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(8,0),OC、AD均是△OAB的中線,OC、AD相交于點F,OE⊥AD于G交AB于E.
(1)點C的坐標(biāo)為__________;
(2)求證:△AFO≌△OEB;
(3)求證:∠ADO=∠EDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知△ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,是邊的中點,連接延長與的延長線相交于點,連接.
()求證:四邊形是平行四邊形.
()已知,求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com