精英家教網(wǎng)如圖,在?ABCD中,AD=4,AB=6,AF是∠BAD的平分線,交DC于F,BE是∠ABC的平分線,交DC于E,AF與BE相交于點(diǎn)O,則S△EOF:S△AOB等于( 。
A、1:3B、2:3C、1:9D、4:9
分析:由四邊形ABCD是平行四邊形,可得AB∥CD,CD=AB=6,BC=AD=4,又由AF是∠BAD的平分線,BE是∠ABC的平分線,易證得△ADF與△BCE是等腰三角形,繼而求得EF的長,然后由相似三角形的面積比等于相似比的平方求得答案.
解答:解:∵四邊形BCD是平行四邊形,
∴AB∥CD,CD=AB=6,BC=AD=4,
∴∠DFA=∠FAB,
∵AF是∠BAD的平分線,
∴∠DAF=∠FAB,
∴∠DFA=∠DAF,
∴DF=AD=4,
同理:CE=BC=4,
∴EF=DF+CF-CD=4+4-6=2,
∵△EOF∽△BOA,
∴S△EOF:S△AOB=(
EF
AB
2=(
2
6
2=
1
9

故選C.
點(diǎn)評:此題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)以及等腰三角形的判定與性質(zhì)等知識.此題綜合性較強(qiáng),難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時,求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊答案