精英家教網 > 初中數學 > 題目詳情

如果兩個三角形不僅是相似三角形,而且每組對應點所在的直線都經過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.

(1)選擇:如圖,點O是等邊三角形PQR的中心,分別是OP、OQ、OR的中點,則△與△PQR是位似三角形.此時,△與△PQR的位似比、位似中心分別為

[  ]

A.2、點P
B.、點P
C.2、點O
D.、點O

(2)如圖,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題.

畫法:①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;

②連結OE并延長,交AB于點,過點∥EC,交OA于點,作∥ED,交OB于點

③連結.則△是△AOB的內接三角形.

求證:△是等邊三角形.

答案:
解析:

  (1)D;

  (2)∵EC∥,∴,∠CEO=O.∴ED∥,,∠DEO=∠.∴,∠CED=∠.∵△CDE是等邊三角形,∴CE=ED,∠CED=.∴,∠.∴是等邊三角形.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為
 
;
(A)2、點P,(B)
1
2
、點P,( C)2、點O,(D)
1
2
、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題精英家教網
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點P,(B)數學公式、點P,( C)2、點O,(D)數學公式、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數學 來源:同步題 題型:解答題

如果兩個三角形不僅是相似三角形,而且每組對應點所在的直線都經過同一個點,對應邊平行,那么這兩個三角形也是位似三角形,它們的相似比是位似比,這個點是位似中心,利用三角形的位似可以將一個三角形縮小或放大。
(1)如圖(1)所示,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形,此時△P′Q′R′與△PQR的位似比、位似中心分別為(    )   
A.2、點P    
B.、點P
C.2、點O    
D.、點O
(2)如圖(2)所示,用下面的方法可以畫△AOB的內接等邊三角形,閱讀后證明相應問題。
畫法:
①在△ABO內畫等邊△CDE,使點C在OA上,點D在OB上;  
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E'D′∥ED,交OB于點D′;  
③連接C′D′,則△C′D′E′是△AOB的內接等邊三角形,試說明△C′D′E′是等邊三角形。

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2004•南京)我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點P,(B)、點P,( C)2、點O,(D)、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題.
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《三角形》(12)(解析版) 題型:解答題

(2004•南京)我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點P,(B)、點P,( C)2、點O,(D)、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題.
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

同步練習冊答案