【題目】AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC的取值范圍是 ;中線AD的取值范圍是 .
【答案】4<BC<20,2<AD<10.
【解析】
試題分析:BC邊的取值范圍可在△ABC中利用三角形的三邊關(guān)系進(jìn)行求解,而對(duì)于中線AD的取值范圍可延長(zhǎng)AD至點(diǎn)E,使AD=DE,得出△ACD≌△EBD,進(jìn)而在△ABE中利用三角形三邊關(guān)系求解.
解:如圖所示,
在△ABC中,則AB﹣AC<BC<AB+AC,
即12﹣8<BC<12+8,4<BC<20,
延長(zhǎng)AD至點(diǎn)E,使AD=DE,連接BE,
∵AD是△ABC的邊BC上的中線,∴BD=CD,
又∠ADC=∠BDE,AD=DE
∴△ACD≌△EBD,∴BE=AC,
在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,
12﹣8<AE<12+8,即4<AE<20,
∴2<AD<10.
故此題的答案為4<BC<20,2<AD<10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:2x-3=3x-2,正確的答案是( )
A. x= 1 B. x= -1 C. x= 5 D. x= -5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解方程x4﹣5x2+4=0,我們可設(shè)x2=y,則x4=y2,原方程可化為y2﹣5y+4=0.解得y1=1,y2=4,當(dāng)y=1時(shí),x2=1,所以x=±1;當(dāng)y=4時(shí),x2=4,所以x=±2.故原方程的解為x1=1,x2=﹣1,x3=2,x4=﹣2.以上解題方法主要體現(xiàn)的數(shù)學(xué)思想是( )
A.?dāng)?shù)形結(jié)合 B.換元與降次 C.消元 D.公理化
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上一點(diǎn),且AD=AE,∠ABE=∠ACD,BE與CD相交于點(diǎn)F.試判斷△BCF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣1,則另一個(gè)根為( )
A.﹣2 B.2 C.4 D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1,P2,P3,P4,P5是△DEF邊上的5個(gè)格點(diǎn),請(qǐng)按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說(shuō)明理由;
(3)畫一個(gè)三角形,使它的三個(gè)頂點(diǎn)為P1,P2,P3,P4,P5中的3個(gè)格點(diǎn)并且與△ABC相似(要求:不寫作法與證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段CD的長(zhǎng);
(2)當(dāng)t取何值時(shí)PQ∥AB?
(3)是否存在某一時(shí)刻t,使得△PCQ為等腰三角形?若存在,求出所有滿足條件的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如(x+m)與(x+3)的乘積中不含x的一次項(xiàng),則m的值為( ).
A. -3 B. 3 C. 0 D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com