【題目】已知:關(guān)于x的一元二次方程x2﹣(2m﹣1)x+m2﹣m﹣2=0.
⑴不解方程,判別方程根的情況;
⑵若方程有一個(gè)根為1,求m的值.
【答案】(1)方程有兩個(gè)不相等的實(shí)數(shù)根;(2)m=0或m=3.
【解析】
(1)找出方程a,b及c的值,計(jì)算出根的判別式的值,根據(jù)其值的正負(fù)判斷根的情況即可;
(2)將x=1代入已知方程中,列出關(guān)于系數(shù)m的新方程,通過解新方程即可求得m的值.
(1)∵△=[﹣(2m﹣1)]2﹣4×1×(m2﹣m﹣2)=4m2﹣4m+1﹣4m2+4m+8=9>0,
∴方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)根據(jù)題意,將x=1代入方程得1-2m+1+m2﹣m﹣2=0,
整理,得:m2-3m=0, 解得:m=0或m=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論: ①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC= ∠BAC.
其中正確的結(jié)論有個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】貴陽(yáng)市今年5月份的最高氣溫為27℃,最低氣溫為18℃,已知某一天的氣溫為t℃,則下面表示氣溫之間的不等關(guān)系正確的是( )
A. 18<t<27 B. 18≤t<27 C. 18<t≤27 D. 18≤t≤27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,點(diǎn)D是△ABC的邊BC的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別為E,F(xiàn),且BF=CE.
(1)求證:AE=AF;
(2)如圖2,若∠BAC=60°,△ABD的面積為4,連接AD交EF于M,連接BM、CM,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中所有面積為1的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為1,點(diǎn)P到圓心的距離為m,且關(guān)于x的一元二次方程x22x+m=0有兩個(gè)不相等實(shí)數(shù)根,則點(diǎn)P與⊙O位置關(guān)系是( )
A. 點(diǎn)p在⊙O內(nèi)B. 點(diǎn)p在⊙O上C. 點(diǎn)p在⊙O外D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式(a-2)x>a-2的解集是x>1,則a的取值范圍是( )
A. a>1 B. a<1 C. a>2 D. a<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點(diǎn),AE∥CD,CE∥AB,判斷四邊形ADCE的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一元二次方程3x2﹣2x=1化成一般形式后,二次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別是( 。
A. 3、1B. 3、2C. 3、﹣1D. 3、﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com