【題目】某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件,需購(gòu)買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料30千克、乙種材料10千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各20千克.經(jīng)測(cè)算,購(gòu)買甲、乙兩種材料各1千克共需資金40元,購(gòu)買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購(gòu)買甲、乙兩種材料的資金不超過(guò)38000元,且生產(chǎn)B產(chǎn)品不少于28件,問符合條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費(fèi)200元,生產(chǎn)一件B產(chǎn)品需加工費(fèi)300元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這50件產(chǎn)品的成本最低?(成本=材料費(fèi)+加工費(fèi))
【答案】
(1)解:設(shè)甲鐘材料每千克x元,乙種材料每千克y元,根據(jù)題意列方程組得:
解之
甲鐘材料每千克15元,乙種材料每千克25元.
(2)設(shè)生產(chǎn)A產(chǎn)品m件,生產(chǎn)B產(chǎn)品(50-m)件,則生產(chǎn)這50件產(chǎn)品的材料費(fèi)為15×30m+25×10m+15×20(50-m)+25×20(50-m)=-100m+40000,
由題意:-100m+40000≤38000,解得m≥20,
又∵50-m≥28,解得m≤22,
∴20≤m≤22,
∵m為正整數(shù)
∴m的值為20,21,22,
共有三種方案,如下表:
A(件) | 20 | 21 | 22 |
B(件) | 30 | 29 | 28 |
(3)設(shè)總生產(chǎn)成本為W元,加工費(fèi)為:200m+300(50-m),
則W=-100m+40000+200m+300(50-m)=-200m+55000,
∵W 隨m的增大而減小,而m=20,21,22,
∴當(dāng)m=22時(shí),總成本最低,此時(shí)W=-200×22+55000=50600元
【解析】(1)此題等量關(guān)系是:甲種材料的單價(jià)+乙兩種材料的單價(jià)=40;甲種材料的單價(jià)2+乙種材料的單價(jià)3=105,設(shè)未知數(shù),建立方程組,解方程組求解即可。
(2)抓住題中關(guān)鍵的已知條件:購(gòu)買甲、乙兩種材料的資金≤38000,生產(chǎn)B產(chǎn)品的數(shù)量≥28,設(shè)未知數(shù)建立不等式組,求出不等式組的解集,再求出其整數(shù)解,就可求出符合條件的生產(chǎn)方案。
(3)設(shè)總生產(chǎn)成本為W元,加工費(fèi)為:200m+300(50-m),根據(jù)成本=材料費(fèi)+加工費(fèi),得到W與m的函數(shù)解析式,再根據(jù)一次函數(shù)的性質(zhì),即可得到最低成本m的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家統(tǒng)計(jì)局4月15日發(fā)布數(shù)據(jù),初步核算,2015年一季度全國(guó)國(guó)內(nèi)生產(chǎn)總值為140667億元,其中數(shù)據(jù)140667用科學(xué)記數(shù)法表示為( )
A.1.40667×105
B.1.40667×106
C.14.0667×104
D.0.140667×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A=(x﹣3)2 , B=(x+2)(x﹣2)
(1)化簡(jiǎn)多項(xiàng)式2A﹣B;
(2)若2A﹣B=2,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)經(jīng)銷甲、乙兩種商品,甲種商品每件進(jìn)價(jià)15元,售價(jià)20元;乙種商品每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若該商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共100件恰好用去2700元,求能購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該商場(chǎng)為使甲、乙兩種商品共100件的總利潤(rùn)(利潤(rùn)=售價(jià)進(jìn)價(jià))不少于750元,且不超過(guò)760元,請(qǐng)你幫助該商場(chǎng)設(shè)計(jì)相應(yīng)的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次體育測(cè)試中,九年級(jí)一班女同學(xué)的一分鐘仰臥起坐成績(jī)(單位:個(gè))如下表:
成績(jī) | 45 | 46 | 47 | 48 | 49 | 50 |
人數(shù) | 1 | 2 | 4 | 2 | 5 | 1 |
這此測(cè)試成績(jī)的中位數(shù)和眾數(shù)分別為( )
A.47,49
B.48,49
C.47.5,49
D.48,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣4,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H,過(guò)點(diǎn)H的直線m交拋物線于P、Q兩點(diǎn),其中點(diǎn)P位于第二象限,點(diǎn)Q在y軸的右側(cè).
(1)求D點(diǎn)坐標(biāo);
(2)若∠PBA=∠OBC,求點(diǎn)P的坐標(biāo);
(3)設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對(duì)角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC垂足為點(diǎn)D,AD是BC邊上的中線,BE⊥AC,垂足為點(diǎn)E.則以下4個(gè)結(jié)論:①AB=AC;②∠EBC= ;③AE=CE;④∠EBC= 中正確的有( )
A.①②
B.②③
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形的三邊長(zhǎng)都是整數(shù),其中兩條邊的長(zhǎng)度分別為3和8,第三邊長(zhǎng)為奇數(shù),那么三角形的周長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com