如圖,有一個圓O和兩個正六邊形T1,T2,T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形)。
(1)設(shè)T1,T2的邊長分別為a,b,圓O的半徑為r,求r∶a 及r∶b的值;
(2)求正六邊形T1,T2的面積比S1∶S2的值。

解:(1)連接圓心O和T1的6個頂點可得6個全等的正三角形,
所以r∶a=1∶1,
連接圓心O和T2相鄰的兩個頂點,得到以圓O半徑為高的正三角形,
所以;
(2)T1,T2的邊長比是
所以S1∶S2=a2∶b2=3∶4。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一個圓O和兩個正六邊形T1,T2.T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).若設(shè)T1,T2的邊長分別為a,b,圓O的半徑為r,則r:a=
 
;r:b=
 
;精英家教網(wǎng)正六邊形T1,T2的面積比S1:S2的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一個圓O和兩個正六邊形T1,T2. T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2精英家教網(wǎng)別為圓O的內(nèi)接正六邊形和外切正六邊形).
(1)設(shè)T1,T2的邊長分別為a,b,圓O的半徑為r,求r:a及r:b的值;
(2)求正六邊形T1,T2的面積比S1:S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,有一個圓O和兩個正六邊形T1,T2. T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2作業(yè)寶別為圓O的內(nèi)接正六邊形和外切正六邊形).
(1)設(shè)T1,T2的邊長分別為a,b,圓O的半徑為r,求r:a及r:b的值;
(2)求正六邊形T1,T2的面積比S1:S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《直線與圓、圓與圓的位置關(guān)系》中考題集(39):3.3 圓與圓的位置關(guān)系(解析版) 題型:解答題

如圖,有一個圓O和兩個正六邊形T1,T2. T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).
(1)設(shè)T1,T2的邊長分別為a,b,圓O的半徑為r,求r:a及r:b的值;
(2)求正六邊形T1,T2的面積比S1:S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(72):3.7 弧長及扇形的面積(解析版) 題型:解答題

如圖,有一個圓O和兩個正六邊形T1,T2. T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).
(1)設(shè)T1,T2的邊長分別為a,b,圓O的半徑為r,求r:a及r:b的值;
(2)求正六邊形T1,T2的面積比S1:S2的值.

查看答案和解析>>

同步練習(xí)冊答案