【題目】如圖,已知拋物線(xiàn)y=ax2+c過(guò)點(diǎn)(﹣2,2),(4,5),過(guò)定點(diǎn)F(0,2)的直線(xiàn)l:y=kx+2與拋物線(xiàn)交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),過(guò)點(diǎn)B作x軸的垂線(xiàn),垂足為C.
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)B在拋物線(xiàn)上運(yùn)動(dòng)時(shí),判斷線(xiàn)段BF與BC的數(shù)量關(guān)系 (>、<、=),并證明你的判斷;
(3)P為y軸上一點(diǎn),以B、C、F、P為頂點(diǎn)的四邊形是菱形,設(shè)點(diǎn)P(0,m),求自然數(shù)m的值;
【答案】(1)y=x2+1;(2)=,理由見(jiàn)解析;(3)m的值為6.
【解析】
(1)把點(diǎn)(-2,2),(4,5)代入y=ax2+c,即可求解;
(2)設(shè)B (x,x2+1),而F(0,2),
則BF2=x2+(x2+1-2)2=x2+(x2-1)2=(x2+1)2,BC=x2+1,故BF=BC;
(3)當(dāng)m=0時(shí),則四邊形BCPF為正方形,此時(shí)P點(diǎn)在原點(diǎn);當(dāng)點(diǎn)P在F點(diǎn)上方,以B、C、F、P為頂點(diǎn)的四邊形是菱形,則CB=CF=PF,則△BCF為等邊三角形,CF=2OF=4,PF=CF=4,即可求解.
解:(1)把點(diǎn)(﹣2,2),(4,5)代入y=ax2+c得:,解得:,
所以?huà)佄锞(xiàn)解析式為y=x2+1;
(2)設(shè)B(x,x2+1),而F(0,2),
∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,
∴BF=x2+1,
∵BC⊥x軸,
∴BC=x2+1,
∴BF=BC,
答案為:=
(3)如圖,m為自然數(shù),
①當(dāng)點(diǎn)P在F點(diǎn)上方,
∵以B、C、F、P為頂點(diǎn)的四邊形是菱形,
∴CB=CF=PF,
而CB=FB,
∴BC=CF=BF,
∴△BCF為等邊三角形,
∴∠BCF=60°,
∴∠OCF=30°,
在Rt△OCF中,CF=2OF=4,
∴PF=CF=4,
∴P(0,6);
②當(dāng)點(diǎn)P在點(diǎn)F下方時(shí),
PF=BC=4,而OF=2,
則OP=2,故m=﹣2(舍去);
③當(dāng)m=0時(shí),
FP=2,但是BC=4,故不符合要求;
綜上,自然數(shù)m的值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動(dòng)如下的兩個(gè)轉(zhuǎn)盤(pán)(每個(gè)轉(zhuǎn)盤(pán)都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)①時(shí),該轉(zhuǎn)盤(pán)指針指向歌曲“3”的概率是 ;
(2)若允許該歌手替換他最不擅長(zhǎng)的歌曲“3”,即指針指向歌曲“3”時(shí),該歌手就選擇自己最擅長(zhǎng)的歌曲“1”, 請(qǐng)用樹(shù)形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E、F分別是AB、DC邊上的點(diǎn),且AE=CF,
(1)求證:≌.
(2)若DEB=90,求證四邊形DEBF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx﹣3,頂點(diǎn)為E,該拋物線(xiàn)與x軸交于A,B兩點(diǎn),與y軸交子點(diǎn)C,且OB=OC=3OA,直線(xiàn)y=﹣x+1與y軸交于點(diǎn)D.求∠DBC﹣∠CBE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,在△ABC中,點(diǎn)O是AC上一點(diǎn),過(guò)點(diǎn)O的直線(xiàn)與AB,BC的延長(zhǎng)線(xiàn)分別相交于點(diǎn)M,N.
【問(wèn)題引入】
(1)若點(diǎn)O是AC的中點(diǎn), ,求的值;
溫馨提示:過(guò)點(diǎn)A作MN的平行線(xiàn)交BN的延長(zhǎng)線(xiàn)于點(diǎn)G.
【探索研究】
(2)若點(diǎn)O是AC上任意一點(diǎn)(不與A,C重合),求證: ;
【拓展應(yīng)用】
(3)如圖②所示,點(diǎn)P是△ABC內(nèi)任意一點(diǎn),射線(xiàn)AP,BP,CP分別交BC,AC,AB于點(diǎn)D,E,F(xiàn).若, ,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把直尺、三角尺和圓形螺母按如圖所示放置于桌面上,∠CAB=60°,若量出AD=6cm,則圓形螺母的外直徑是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊△ABC內(nèi)接于⊙O,AD為O的直徑交線(xiàn)段BC于點(diǎn)M,DE∥BC,交AB的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若等邊△ABC的邊長(zhǎng)為6,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com