【題目】已知拋物線Lyx2x-6x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C

(1)AB、C三點(diǎn)的坐標(biāo),并求出ABC的面積;

(2)將拋物線向左或向右平移,得到拋物線L,且Lx軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸交于點(diǎn)C,要使ABCABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.

【答案】(1)A(-3,0),B(2,0),C(0,6);15;(2)yx2-7x-6,yx2+7x-6,yx2x-6.

【解析】1)在拋物線解析式中分別令x=0、y=0即可求得拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式即可求得三角形的面積;

(2)將拋物線向左或向右平移時(shí),A、B兩點(diǎn)間的距離不變,始終為5,那么要使ABCABC的面積相等,高也只能是6,分點(diǎn)Cx軸上方與x軸下方兩種情況分別討論即可得.

(1)當(dāng)y=0時(shí),x2+x-6=0,解得x1=-3,x2=2,

當(dāng)x=0時(shí),y=-6,

A(-3,0),B(2,0),C(0,6),

SABCAB·OC=×5×6=15;

(2)將拋物線向左或向右平移時(shí),A、B兩點(diǎn)間的距離不變,始終為5,

那么要使ABCABC的面積相等,高也只能是6,

設(shè)A(a,0),則B(a+5,0),y=(x-a)(x-a-5),

當(dāng)x=0時(shí),y=a2+5a,

當(dāng)C點(diǎn)在x軸上方時(shí),y=a2+5a=6,a=1a=-6,

此時(shí)y=x2-7x-6y=x2+7x-6;

當(dāng)C點(diǎn)在x軸下方時(shí),y=a2+5a=-6,a=-2a=-3,

此時(shí)y=x2-x-6y=x2+x-6(與原拋物線重合,舍去);

所以,所有滿足條件的拋物線的函數(shù)表達(dá)式為:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰直角三角形ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE△ABP的外接圓⊙O的直徑.

1)求證:△APE是等腰直角三角形;

2)若⊙O的直徑為2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線l1經(jīng)過(guò)點(diǎn)(0,4),l2經(jīng)過(guò)(3,2),且l1l2關(guān)于x軸對(duì)稱,則l1l2的交點(diǎn)坐標(biāo)為

A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游公司大巴從旅行社出發(fā),先向西行駛3千米到達(dá)景點(diǎn),再繼續(xù)向西行駛2千米到達(dá)景點(diǎn),然后向東行駛7千米到達(dá)景點(diǎn),最后回到旅行社.

1)以旅行社為原點(diǎn),以向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1千米,畫出數(shù)軸,并在該數(shù)軸上表示出、三個(gè)景點(diǎn)的位置.

2景點(diǎn)距離景點(diǎn)多遠(yuǎn)?

3)該旅游大巴共行駛了多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以斜邊AB上的中線CD為直徑作⊙O,分別與AC、BC相交于點(diǎn)M、N.

(1)過(guò)點(diǎn)N作⊙O的切線NEAB相交于點(diǎn)E,求證:NEAB;

(2)連接MD,求證:MD=NB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)B(,n).連接OB,若SAOB=1.

(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

(2)直接寫出不等式組 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,解答后面的問(wèn)題:十字相乘法能將二次三項(xiàng)式分解因式,對(duì)于形如的關(guān)于,的二次三項(xiàng)式來(lái)說(shuō),方法的關(guān)鍵是將項(xiàng)系數(shù)分解成兩個(gè)因數(shù),的積,即,將項(xiàng)系數(shù)分解成兩個(gè)因式,的積,即,并使正好等于項(xiàng)的系數(shù),那么可以直接寫成結(jié)果:

例:分解因式:

解:如圖1,其中,,而

所以

而對(duì)于形如的關(guān)于,的二元二次式也可以用十字相乘法來(lái)分解.如圖2.將分解成乘積作為一列,分解成乘積作為第二列,分解成乘積作為第三列,如果,,即第1、2列,第2、3列和第1、3列都滿足十字相乘規(guī)則,則原式

例:分解因式

解:如圖3,其中,

,

所以

請(qǐng)同學(xué)們通過(guò)閱讀上述材料,完成下列問(wèn)題:

1)分解因式:①

2)若關(guān)于,的二元二次式可以分解成兩個(gè)一次因式的積,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示,下列敘述正確的是(

A. 甲乙兩地相距1200千米

B. 快車的速度是80千米小時(shí)

C. 慢車的速度是60千米小時(shí)

D. 快車到達(dá)甲地時(shí),慢車距離乙地100千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016山東省菏澤市)如圖,△ACB和△DCE均為等腰三角形,點(diǎn)A,D,E在同一直線上,連接BE

1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°

①求證:AD=BE;

②求∠AEB的度數(shù).

2)如圖2,若∠ACB=∠DCE=120°,CM為△DCEDE邊上的高,BN為△ABEAE邊上的高,試證明:AE=CM+BN

查看答案和解析>>

同步練習(xí)冊(cè)答案