2.如圖,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度數(shù).
請(qǐng)將求∠GDB度數(shù)的過程填寫完整.
解:因?yàn)镋F⊥BC,AD⊥BC,
所以∠BFE=90°,∠BDA=90°,理由是垂直的定義,
即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,兩直線平行,
所以∠2=∠3,理由是兩直線平行,同位角相等.
因?yàn)椤?=∠2,所以∠1=∠3,
所以AB∥DG,理由是內(nèi)錯(cuò)角相等,兩直線平行,
所以∠B+∠GDB=180°,理由是兩直線平行,同旁內(nèi)角互補(bǔ).
又因?yàn)椤螧=30°,所以∠GDB=150°.

分析 先根據(jù)垂直的定義得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行線的性質(zhì)得出∠2=∠3,利用等量代換得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出結(jié)論.

解答 解:∵EF⊥BC,AD⊥BC,
∴∠BFE=90°,∠BDA=90°(垂直的定義),即∠BFE=∠BDA,
∴EF∥AD(同位角相等,兩直線平行),
∴∠2=∠3(兩直線平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠B+∠GDB=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
又∵∠B=30°,
∴∠GDB=150°.
故答案為:垂直的定義,AD,同位角相等,兩直線平行,∠3,兩直線平行,同位角相等,DG,內(nèi)錯(cuò)角相等,兩直線平行,∠GDB,兩直線平行,同旁內(nèi)角互補(bǔ),150°.

點(diǎn)評(píng) 本題考查的是平行線的判定與性質(zhì),用到的知識(shí)點(diǎn)為:同位角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.求下列各式的值.
(1)$\sqrt{{{(-4)}^2}}$-$\root{{{\;}^3}}{-8}$+$\sqrt{1\frac{9}{16}}$;
(2)(-3)2-$\sqrt{{{10}^{-2}}}$+$\root{{{\;}^3}}{27}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.已知m是系數(shù),關(guān)于x、y的兩個(gè)多項(xiàng)式mx2-2x+y與-3x2+2x+3y的差中不含二次項(xiàng),則代數(shù)式m2+3m-1的值為-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)軸上有A,B,C三點(diǎn),分別代表-30,-10,10,兩只電子螞蟻甲,乙分別從A,C兩點(diǎn)同時(shí)相向而行,甲的速度為4個(gè)單位/秒,乙的速度為6個(gè)單位/秒.
(1)甲,乙在數(shù)軸上的哪個(gè)點(diǎn)相遇?
(2)多少秒后,甲到A,B,C的距離和為48個(gè)單位?
(3)在甲到A、B、C的距離和為48個(gè)單位時(shí),若甲調(diào)頭并保持速度不變,則甲,乙還能在數(shù)軸上相遇嗎?若能,求出相遇點(diǎn);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.(1)計(jì)算:($\sqrt{5}$)2-$\root{3}{-8}$-|-3|+(-$\frac{1}{5}$)0
(2)已知:$\frac{1}{3}$(x+2)2-3=0,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF和AD.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠EAC=60°,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.若a<0,則下列結(jié)論不正確的是( 。
A.a2=(-a)2B.a3=(-a)3C.a2=|a|2D.a3=-|a|3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,直線a,b被直線c,d所截,若∠1=∠2,∠3=135°,則∠4的度數(shù)為( 。
A.55°B.65°C.135°D.45°

查看答案和解析>>

同步練習(xí)冊(cè)答案