【題目】在邊長為a的正方形中挖去一個(gè)邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證(
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2

【答案】C
【解析】解:∵圖甲中陰影部分的面積=a2﹣b2 , 圖乙中陰影部分的面積=(a+b)(a﹣b), 而兩個(gè)圖形中陰影部分的面積相等,
∴陰影部分的面積=a2﹣b2=(a+b)(a﹣b).
故選:C.
第一個(gè)圖形中陰影部分的面積計(jì)算方法是邊長是a的正方形的面積減去邊長是b的小正方形的面積,等于a2﹣b2;第二個(gè)圖形陰影部分是一個(gè)長是(a+b),寬是(a﹣b)的長方形,面積是(a+b)(a﹣b);這兩個(gè)圖形的陰影部分的面積相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB、CD交于點(diǎn)O,OE⊥AB于O,則下列不正確的是(
A.∠AOC與∠BOD是對頂角
B.∠BOD和∠DOE互為余角
C.∠AOC和∠DOE互為余角
D.∠AOE和∠BOC是對頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2+4x﹣12=0的兩根的平方和=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿A→D→A運(yùn)動(dòng),動(dòng)點(diǎn)G從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿A→B運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之也停止運(yùn)動(dòng).過點(diǎn)GFGABAC于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,FGH與正方形ABCD重疊部分的面積為S.

(1)當(dāng)t1.5時(shí),S________;當(dāng)t3時(shí),S________.

(2)設(shè)DEy1,AGy2,在如圖所示的網(wǎng)格坐標(biāo)系中,畫出y1y2關(guān)于t的函數(shù)圖象.并求當(dāng)t為何值時(shí),四邊形DEGF是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A-3,y1),B2,y2)在拋物線y=x2-x上,則y1______y2.(填,“=”之一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若單項(xiàng)式3abm和﹣4anb是同類項(xiàng),則m+n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

發(fā)現(xiàn)問題:

如圖,已知:OAB中,OB=3,將OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°OAB,連接BB

則BB=

問題探究:

如圖,已知ABC是邊長為4的等邊三角形,以BC為邊向外作等邊BCD,P為ABC內(nèi)一點(diǎn),將線段CP繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,P的對應(yīng)點(diǎn)為Q.

(1)求證:DCQ≌△BCP

(2)求PA+PB+PC的最小值.

實(shí)際應(yīng)用:

如圖,某貨運(yùn)場為一個(gè)矩形場地ABCD,其中AB=500米,AD=800米,頂點(diǎn)A、D為兩個(gè)出口,現(xiàn)在想在貨運(yùn)廣場內(nèi)建一個(gè)貨物堆放平臺P,在BC邊上(含B、C兩點(diǎn))開一個(gè)貨物入口M,并修建三條專用車道PA、PD、PM.若修建每米專用車道的費(fèi)用為10000元,當(dāng)M,P建在何處時(shí),修建專用車道的費(fèi)用最少?最少費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小李騎自行車離家的距離s(km)與時(shí)間t(h)之間的關(guān)系.
(1)在這個(gè)變化過程中自變量是 , 因變量是
(2)小李何時(shí)到達(dá)離家最遠(yuǎn)的地方?此時(shí)離家多遠(yuǎn)?
(3)分別求出在1≤t≤2時(shí)和2≤t≤4時(shí)小李騎自行車的速度.
(4)請直接寫出小李何時(shí)與家相距20km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.

(1)求BD的長;

(2)若DCN的面積為2,求四邊形ABCM的面積.

查看答案和解析>>

同步練習(xí)冊答案