【題目】如圖,梯形ABCD中,AD∥BC,CD⊥BC,已知AB=5,BC=6,cosB=.點(diǎn)O為BC邊上的動(dòng)點(diǎn),以O為圓心,BO為半徑的⊙O交邊AB于點(diǎn)P.
(1)設(shè)OB=x,BP=y,求y與x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)定義域;
(2)當(dāng)⊙O與以點(diǎn)D為圓心,DC為半徑⊙D外切時(shí),求⊙O的半徑;
(3)連接OD、AC,交于點(diǎn)E,當(dāng)△CEO為等腰三角形時(shí),求⊙O的半徑.
【答案】(1)y=x(0<x≤);(2)1.8;(3)當(dāng)△CEO為等腰三角形時(shí),⊙O的半徑為3或4.
【解析】
(1)首先作OM⊥BD,即可滿(mǎn)足垂徑定理,在直角△OBM中求得BM的長(zhǎng),即可求得BP;
(2)連接OD.作AN⊥BC,根據(jù)三角函數(shù)即可求得CD的長(zhǎng),根據(jù)兩圓相外切時(shí),圓心距等于半徑的和即可得到一個(gè)關(guān)于半徑長(zhǎng)的一個(gè)方程,即可求得半徑長(zhǎng);
(3)當(dāng)△CEO為等腰三角形時(shí),利用當(dāng)EO=EC時(shí),當(dāng)CE=CO時(shí),分別求得圓的半徑.
(1)作OM⊥BP,
則BP=2BM.
在直角△BMO中,
cosB==.
∴BM=OBcosB=.
則BP=2BM=.
∴函數(shù)的解析式是:y=x(0<x≤);
(2)連接OD.作AN⊥BC.
∵在直角△ABN中,cosB==.
∴BN=ABcosB=5×=3.
則AN=CD=4.
在直角△OCD中,OC=BC﹣OB=6﹣x,CD=4.
則OD=.
當(dāng)兩圓相切時(shí): =x+4
解得:x=1.8;
(3)在Rt△ACD中,AC=5,設(shè)⊙O的半徑為x,
當(dāng)EO=EC時(shí),∠EOC=∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠EOC,
∴AB∥OD,
又∵AD∥BC,
∴OB=AD=3,
∴⊙O的半徑為3,
當(dāng)OE=OC時(shí),∠ECO=∠CEO,
∵AD∥BC,
∴∠DAE=∠ECO,
∵∠AED=∠CEO,∴∠DAE=∠AED,
∴AD=DE=3,
∴OD=OE+DE=6﹣x+3=9﹣x,
在Rt△OCD中,
∵CD2+OC2=OD2,
∴42+(6﹣x)2=(9﹣x)2,
解得:x=(不合題意舍去)
當(dāng)CE=CO時(shí),∠CEO=∠COE,
∵AD∥BC,
∴∠ADE=∠COE,
∵∠AED=∠CEO,
∴∠AED=∠ADE,
∴AD=AE=3,
∵CE+AE=AC,
∴6﹣x+3=5,
∴x=4,
∴⊙O的半徑為4.
綜上所述,當(dāng)△CEO為等腰三角形時(shí),⊙O的半徑為3或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無(wú)人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無(wú)人機(jī)飛行至C處時(shí)、測(cè)得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD為100米,則兩景點(diǎn)A、B間的距離為__米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“全民讀書(shū)月”活動(dòng)中,小明調(diào)查了班級(jí)里40名同學(xué)本學(xué)期計(jì)劃購(gòu)買(mǎi)課外書(shū)的花費(fèi)情況,并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(直接填寫(xiě)結(jié)果)
(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ;
(2)這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是 ;
(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計(jì)本學(xué)期計(jì)劃購(gòu)買(mǎi)課外書(shū)花費(fèi)50元的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某計(jì)算機(jī)中有、、三個(gè)按鍵,以下是這三個(gè)按鍵的功能.
(1).:將熒幕顯示的數(shù)變成它的正平方根,例如:熒幕顯示的數(shù)為49時(shí),按下后會(huì)變成7.
(2).:將熒幕顯示的數(shù)變成它的倒數(shù),例如:熒幕顯示的數(shù)為25時(shí),按下后會(huì)變成0.04.
(3).:將熒幕顯示的數(shù)變成它的平方,例如:熒幕顯示的數(shù)為6時(shí),按下后會(huì)變成36.
若熒幕顯示的數(shù)為100時(shí),小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當(dāng)他按了第100下后熒幕顯示的數(shù)是多少( 。
A. 0.01 B. 0.1 C. 10 D. 100
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把Rt△ABC放在平面直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=13,點(diǎn)A、B的坐標(biāo)分別為(1,0),(6,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線(xiàn)y=2x﹣4上時(shí),線(xiàn)段BC掃過(guò)的面積為( 。
A.84B.80C.91D.78
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)E是AD的中點(diǎn),連接CE,將△CDE沿著CE翻折得到△CFE,EF交BC于點(diǎn)G,CF的延長(zhǎng)線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)H,若AH=25,BC=40,則FG=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l1:y=與x軸、y軸分別相交于點(diǎn)A、B,直線(xiàn)l2與直線(xiàn)y=﹣x平行,且與直線(xiàn)l1相交于點(diǎn)B,與x軸交于點(diǎn)C.
(1)求點(diǎn)C坐標(biāo);
(2)若點(diǎn)P是y軸右側(cè)直線(xiàn)l1上一動(dòng)點(diǎn),點(diǎn)Q是直線(xiàn)l2上一動(dòng)點(diǎn),點(diǎn)D(﹣2,6),求當(dāng)S△PBC=S四邊形AOBD時(shí),點(diǎn)P的坐標(biāo),并求出此時(shí),PQ+DQ的最小值;
(3)將△AOB沿著直線(xiàn)l2平移,平移后記為△A1O1B1,直線(xiàn)O1B1交11于點(diǎn)M,直線(xiàn)A1B1交x軸于點(diǎn)N,當(dāng)△B1MN是等腰三角形時(shí),求點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)《實(shí)數(shù)》內(nèi)容時(shí),我們估算帶有根號(hào)的無(wú)理數(shù)的近似值時(shí),經(jīng)常使用“逐步逼近”的方法來(lái)實(shí)現(xiàn)的.“逐步逼近”是數(shù)學(xué)思維方法的一種重要形式,主要通過(guò)構(gòu)造“擬對(duì)象”、逐步擴(kuò)充元素、逐步擴(kuò)充范圍、放縮逼近、合力逼近等方式解決問(wèn)題.
例如:估算的近似值時(shí),利用“逐步逼近”法可以得出.請(qǐng)你根據(jù)閱讀內(nèi)容回答下列問(wèn)題:
(1)介于連續(xù)的兩個(gè)整數(shù)和,且,那么______,______;
(2)的整數(shù)部分是______,小數(shù)部分是______;
(3)已知的小數(shù)部分為,的小數(shù)部分為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC的兩邊AB、AC所在直線(xiàn)上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線(xiàn)AB、AC上移動(dòng)時(shí),BM、NC、MN之間的數(shù)量關(guān)系及△AMN的周長(zhǎng)x與等邊△ABC的周長(zhǎng)y的關(guān)系.
(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是 ; 此時(shí)= ;
(2)如圖2,點(diǎn)M、N在邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想( I)問(wèn)的兩個(gè)結(jié)論還成立嗎?若成立請(qǐng)直接寫(xiě)出你的結(jié)論;若不成立請(qǐng)說(shuō)明理由.
(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長(zhǎng)線(xiàn)上時(shí),探索BM、NC、MN之間的數(shù)量關(guān)系如何?并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com