【題目】在矩形ABCD中,AB=4,BC=3,點(diǎn)P在AB上.若將△DAP沿DP折疊,使點(diǎn)A落在矩形對(duì)角線上的A′處,則AP的長(zhǎng)為

【答案】
【解析】解:①點(diǎn)A落在矩形對(duì)角線BD上,如圖1,
∵AB=4,BC=3,
∴BD=5,
根據(jù)折疊的性質(zhì),AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
∴BA′=2,
設(shè)AP=x,則BP=4﹣x,
∵BP2=BA′2+PA′2
∴(4﹣x)2=x2+22 ,
解得:x=
∴AP= ;
②點(diǎn)A落在矩形對(duì)角線AC上,如圖2,

根據(jù)折疊的性質(zhì)可知DP⊥AC,
∴△DAP∽△ABC,
,
∴AP= = =
故答案為:
分兩種情況探討:點(diǎn)A落在矩形對(duì)角線BD上,點(diǎn)A落在矩形對(duì)角線AC上,在直角三角形中利用勾股定理列出方程,通過(guò)解方程可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)2、3、6、8、x的眾數(shù)是x,其中x又是不等式組 的整數(shù)解,則這組數(shù)據(jù)的中位數(shù)可能是( )
A.3
B.4
C.6
D.3或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC與∠CBE的平分線相交于點(diǎn)P,BEBCPBCE交于點(diǎn)H,PGADBCF,交ABG,下列結(jié)論:① GAGP SPACSPABACAB; BP垂直平分CE FPFC,其中正確的判斷有(

A. 只有①② B. 只有③④ C. 只有①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某品牌電風(fēng)扇銷(xiāo)售量的情況,對(duì)某商場(chǎng)5月份該品牌甲、乙、丙三種型號(hào)的電風(fēng)扇銷(xiāo)售量進(jìn)行統(tǒng)計(jì),繪制如下兩個(gè)統(tǒng)計(jì)圖(均不完整).請(qǐng)你結(jié)合圖中的信息,解答下列問(wèn)題:

(1)該商場(chǎng)5月份售出這種品牌的電風(fēng)扇共多少臺(tái)?

(2)若該商場(chǎng)計(jì)劃訂購(gòu)這三種型號(hào)的電風(fēng)扇共2000臺(tái),根據(jù)5月份銷(xiāo)售量的情況,求該商場(chǎng)應(yīng)訂購(gòu)丙種型號(hào)電風(fēng)扇多少臺(tái)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過(guò)點(diǎn)DEF∥BC,分別交AB、ACE、F兩點(diǎn),則圖中共有__________個(gè)等腰三角形;EFBE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長(zhǎng)是__________;

(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個(gè)等腰三角形;EFBE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長(zhǎng);

(3)已知:如圖3,D△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過(guò)點(diǎn)DDE∥BC,分別交AB、ACE、F兩點(diǎn),則EFBE、CF之間又有何數(shù)量關(guān)系呢?直接寫(xiě)出結(jié)論不證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名射擊運(yùn)動(dòng)員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績(jī)?nèi)鐖D所示.

根據(jù)圖中信息,回答下列問(wèn)題:

(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;

(2)分別計(jì)算甲、乙成績(jī)的方差,并從計(jì)算結(jié)果來(lái)分析,你認(rèn)為哪位運(yùn)動(dòng)員的射擊成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線y=ax2+bx+c與x軸的另一個(gè)交點(diǎn)為(3,0);④abc>0.其中正確的結(jié)論是(填寫(xiě)序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖2,“和諧號(hào)”高鐵列車(chē)的小桌板收起時(shí)近似看作與地面垂直,展開(kāi)小桌板使桌面保持水平時(shí)如圖1,小桌板的邊沿O點(diǎn)與收起時(shí)桌面頂端A點(diǎn)的距離OA=75厘米,此時(shí)CB⊥AO,∠AOB=∠ACB=37°,且支架長(zhǎng)OB與支架長(zhǎng)BC的長(zhǎng)度之和等于OA的長(zhǎng)度.
(1)求∠CBO的度數(shù);
(2)求小桌板桌面的寬度BC.(參考數(shù)據(jù)sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊(cè)答案