精英家教網 > 初中數學 > 題目詳情

如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線l,過點Bl的垂線BD,垂足為DBD與⊙O交于點 E

(1).求∠AEC的度數;

 (2).求證:四邊形OBEC是菱形.

 

 

 

 

 

 

(1)解:在△AOC中,AC=2,

   ∵ AOOC=2,

∴ △AOC是等邊三角形.………………2分

∴ ∠AOC=60°,

∴∠AEC=30°………………3分

(2)證明:∵OCl,BDl

OCBD

∴ ∠ABD=∠AOC=60°.

AB為⊙O的直徑,

∴ △AEB為直角三角形,∠EAB=30°.

∴∠EAB=∠AEC

∴ 四邊形OBEC 為平行四邊形.  ………………5分

又∵ OBOC=2. 

∴ 四邊形OBEC是菱形.………………6分

 

解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習冊答案