【題目】如圖,將在Rt△ABC繞其銳角頂點A旋轉90°得到在Rt△ADE,連接BE,延長DE、BC相交于點F,則有∠BFE=90°,且四邊形ACFD是一個正方形.

(1)判斷△ABE的形狀,并證明你的結論;

(2)用含b代數(shù)式表示四邊形ABFE的面積;

(3)求證:a2+b2=c2

【答案】(1)△ABE是等腰直角三角形,證明詳見解析;(2)b 2;(3)詳見解析.

【解析】

(1)利用旋轉的性質得出∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,AB=AE,即可得出△ABE的形狀;(2)利用四邊形ABFE的面積等于正方形ACFD面積,即可得出答案;(3)利用正方形ACFD面積等于Rt△BAERt△BFE的面積之和進而證明即可.

(1)△ABE是等腰直角三角形,

證明:∵Rt△ABC繞其銳角頂點A旋轉90°得到在Rt△ADE,

∴∠BAC=∠DAE,

∴∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,

∵AB=AE,

∴△ABE是等腰直角三角形;

(2)∵四邊形ABFE的面積等于正方形ACFD面積,

四邊形ABFE的面積等于:b 2

(3)∵S正方形ACFD=SBAE+SBFE

即:b2=c2+(b+a)(b﹣a),

整理:2b2=c2+(b+a)(b﹣a)

∴a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為10,圓O分別與AB、AD相切于E、F兩點,且與BG相切于G點.若AO=5,且圓O的半徑為3,則BG的長度為何?( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是 ;
第二個數(shù)是
第三個數(shù)是 ;

對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于
(1)經過探究,我們發(fā)現(xiàn):
設這列數(shù)的第5個數(shù)為a,那么 , ,哪個正確?
請你直接寫出正確的結論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于 ”;
(3)設M表示 , , ,…, ,這2016個數(shù)的和,即 ,
求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2S3,若S1+S2+S3=10,則S2的值是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,D、E為斜邊AB上的兩點,且BD=BC,AE=AC,∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20028月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D,F(xiàn)分別在AC,BC邊上,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關系的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx-6經過點A(4,0),直線y=-3x+3與x軸交于點B,且兩直線交于點C.

(1)求k的值;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.

(1)求該拋物線的解析式;
(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.
(3)在拋物線的第二象限圖象上是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存,請說明理由.

查看答案和解析>>

同步練習冊答案