【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向中點F,G運動.連接PB,QE,設運動時間為t(s).
(1)求證:四邊形PEQB為平行四邊形;
(2)填空: ①當t=s時,四邊形PBQE為菱形;
②當t=s時,四邊形PBQE為矩形.
【答案】
(1)證明:∵正六邊形ABCDEF內(nèi)接于⊙O,
∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF∠F,
∵點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度,運動時間為t(s),
∴AP=DQ=t,則PF=QC=4﹣t,
在△ABP和△DEQ中
∴△ABP≌△DEQ(SAS)
∴BP=EQ,
同理可證,PE=QB,
∴四邊形PEQB是平行四邊形.
(2)2;0或4
【解析】(2)解:①當四邊形PBQE為菱形時,PB=PE=EQ=QB, ∴△ABP≌△DEQ≌△PFE≌△QCB,
∴AP=PF=DQ=QC,
即t=4﹣t,得t=2,
故答案為:2;②當t=0時,∠EPF=∠PEF=30°,
∴∠BPE=120°﹣30°=90°,
∴此時四邊形PBQE為矩形;
當t=4時,∠ABP=∠APB=30°,
∴∠BPE=120°﹣30°=90°,
∴此時四邊形PBQE為矩形.
故答案為:0或4.
(1)根據(jù)正六邊形ABCDEF內(nèi)接于⊙O,可以得到正六邊形的各邊相等、各個內(nèi)角相等,由點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度,運動時間為t,可以得到BP與QE,PE與BQ的關(guān)系,從而可以證得結(jié)論;(2)①根據(jù)菱形的性質(zhì)可以得到菱形的四條邊都相等,從而可以得到所用的時間;②根據(jù)矩形的性質(zhì),可以分別得到t為多少時,四邊形PBQE為矩形.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
我們知道的幾何意義是在數(shù)軸上數(shù)對應的點與原點的距離,即=,也就是說,表示在數(shù)軸上數(shù)與數(shù)0對應的點之間的距離;這個結(jié)論可以推廣為表示在數(shù)軸上數(shù)與數(shù)對應的點之間的距離;
例1.解方程||=2.因為在數(shù)軸上到原點的距離為2的點對應的數(shù)為,所以方程||=2的解為.
例2.解不等式|-1|>2.在數(shù)軸上找出|-1|=2的解(如圖),因為在數(shù)軸上到1對應的點的距離等于2的點對應的數(shù)為-1或3,所以方程|-1|=2的解為=-1或=3,因此不等式|-1|>2的解集為<-1或>3.
例3.解方程|-1|+|+2|=5.由絕對值的幾何意義知,該方程就是求在數(shù)軸上到1和-2對應的點的距離之和等于5的點對應的的值.因為在數(shù)軸上1和-2對應的點的距離為3(如圖),滿足方程的對應的點在1的右邊或-2的左邊.若對應的點在1的右邊,可得=2;若對應的點在-2的左邊,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.
參考閱讀材料,解答下列問題:
(1)方程|+3|=4的解為 ;
(2)解不等式:|-3|≥5;
(3)解不等式:|-3|+|+4|≥9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列各題:
(1)計算:-22+|5-8|+24÷(-3)×;
(2)化簡與計算:
①化簡:3x2-[7x-(4x-3)-2x2];
②先化簡,再求值:x-2+,其中x=-2,y=;
(3)解方程:
①32x-64=16x+32;
②-=2-.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空并完成以下證明:
已知:點P在直線CD上,∠BAP+∠APD=180°,∠1=∠2.
求證:AB∥CD,∠E=∠F.
證明:∵∠BAP+∠APD=180°,(已知)
∴AB∥ .( )
∴∠BAP= .( )
又∵∠1=∠2,(已知)
∠3= ﹣∠1,
∠4= ﹣∠2,
∴∠3= (等式的性質(zhì))
∴AE∥PF.( )
∴∠E=∠F.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知n邊形的內(nèi)角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、F分別在線段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y= x,點A1(0,1),過點A1作y軸的垂線交直線l于點B1 , 以原點O為圓心,OB1長為半徑畫弧交y軸于點A2;再過點A2作y軸的垂線交直線l于點B2 , 以原點O為圓心,OB2長為半徑畫弧交y軸于點A3 , …,按此作法進行下去,則OA2017= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據(jù)所給的直角坐標系(O是坐標原點),解答下列問題:
(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標;
(2)求出在整個平移過程中,△ABC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師為了了解學生暑期在家的閱讀情況,隨機調(diào)查了20名學生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:
閱讀時間 (小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學生閱讀小時數(shù)的說法正確的是( )
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com