某公司營(yíng)銷A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售A種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系。
當(dāng)x=1時(shí),y=1.4;當(dāng)x=3時(shí),y=3.6。
信息2:銷售B種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系。
根據(jù)以上信息,解答下列問(wèn)題:
(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)A,B兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?
(1)
(2)購(gòu)進(jìn)A產(chǎn)品6噸,購(gòu)進(jìn)B產(chǎn)品4噸,銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是6.6萬(wàn)元。
解析分析:(1)將(1,1.4),(3,3.6)代入,解方程組求出a、b的值即可得二次函數(shù)解析式。
(2)建立銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和與購(gòu)進(jìn)A產(chǎn)品數(shù)量之間的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)的最值原理求解。
解:(1)將(1,1.4),(3,3.6)代入,得
,解得。
∴二次函數(shù)解析式為。
(2)設(shè)購(gòu)進(jìn)A產(chǎn)品m噸,購(gòu)進(jìn)B產(chǎn)品10-m噸,銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和為W萬(wàn)元。則
∵,∴當(dāng)m=6時(shí),W有最大值6.6。
∴購(gòu)進(jìn)A產(chǎn)品6噸,購(gòu)進(jìn)B產(chǎn)品4噸,銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是6.6萬(wàn)元。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫(huà)出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫(xiě)出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過(guò)點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)S△PAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,在?ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動(dòng),沿B﹣A運(yùn)動(dòng)時(shí)的速度為每秒13個(gè)單位長(zhǎng)度,沿A﹣D﹣A運(yùn)動(dòng)時(shí)的速度為每秒8個(gè)單位長(zhǎng)度.點(diǎn)Q從點(diǎn) B出發(fā)沿BC方向運(yùn)動(dòng),速度為每秒5個(gè)單位長(zhǎng)度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ.
(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動(dòng)時(shí),求AP的長(zhǎng)(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過(guò)點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過(guò)程中,當(dāng)線段PQ掃過(guò)的圖形(陰影部分)被線段BR分成面積相等的兩部分時(shí)t的值.
(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對(duì)稱點(diǎn)分別為C′、D′,直接寫(xiě)出C′D′∥BC時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(,0)和點(diǎn)B(1,),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說(shuō)明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=∠MFO時(shí),請(qǐng)直接寫(xiě)出線段BM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知:△ABC為邊長(zhǎng)是的等邊三角形,四邊形DEFG為邊長(zhǎng)是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿EF方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動(dòng),設(shè)△ABC的運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作∠ABE的角平分線BM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請(qǐng)求出線段EH的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖3,若四邊形DEFG為邊長(zhǎng)為的正方形,△ABC的移動(dòng)速度為每秒個(gè)單位長(zhǎng)度,其余條件保持不變.△ABC開(kāi)始移動(dòng)的同時(shí),Q點(diǎn)從F點(diǎn)開(kāi)始,沿折線FG﹣GD以每秒個(gè)單位長(zhǎng)度開(kāi)始移動(dòng),△ABC停止運(yùn)動(dòng)時(shí),Q點(diǎn)也停止運(yùn)動(dòng).設(shè)在運(yùn)動(dòng)過(guò)程中,DE交折線BA﹣AC于P點(diǎn),則是否存在t的值,使得PC⊥EQ,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對(duì)稱軸是直線
(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時(shí),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)A(2,0),與y軸的交點(diǎn)為B(0,-1).
(1)求拋物線的解析式;
(2)在對(duì)稱軸右側(cè)的拋物線上找出一點(diǎn)C,使以BC為直徑的圓經(jīng)過(guò)拋物線的頂點(diǎn)A.并求出點(diǎn)C的坐標(biāo)以及此時(shí)圓的圓心P點(diǎn)的坐標(biāo).
(3)在(2)的基礎(chǔ)上,設(shè)直線x=t(0<t<10)與拋物線交于點(diǎn)N,當(dāng)t為何值時(shí),△BCN的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
反比例函數(shù)y=和正比例函數(shù)y=mx的圖象如圖所示.由此可以得到方程=mx的實(shí)數(shù)根為( )
A.x=-2 | B.x=1 | C.x1=2,x2=-2 | D.x1=1,x2=-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
已知點(diǎn)A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函數(shù)y= 的圖象上,則y1、y2、y3的大小關(guān)系是( 。
A.y3<y1<y2 |
B.y1<y2<y3 |
C.y2<y1<y3 |
D.y3<y2<y1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com