若A(),B(),C()為二次函數(shù)y=x²+4x-5 的圖象上的三點(diǎn),則的大小關(guān)系是(     ) 
A.B.C. D.
B.

試題分析:直接把x的值代入二次函數(shù)y=x²+4x-5中,分別計(jì)算出y1,y2,y3的值,然后再比較大小.
把x=代入y=x²+4x-5中,得y1;把x=代入y=x²+4x-5中,得y2;把x=代入y=x²+4x-5中,得y3;∵,∴y2<y1<y3.
故選擇B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線與y軸交于點(diǎn)A,拋物線經(jīng)過點(diǎn)A,其頂點(diǎn)為B,另一拋物線的頂點(diǎn)為D,兩拋物線相交于點(diǎn)C

(1)求點(diǎn)B的坐標(biāo),并說明點(diǎn)D在直線的理由;
(2)設(shè)交點(diǎn)C的橫坐標(biāo)為m
①交點(diǎn)C的縱坐標(biāo)可以表示為:        或        ,由此請進(jìn)一步探究m關(guān)于h的函數(shù)關(guān)系式;
②如圖2,若,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)P的坐標(biāo)為           時(shí),四邊形PQAC是平行四邊形;當(dāng)點(diǎn)P的坐標(biāo)為                 時(shí),四邊形PQAC是等腰梯形. (利用備用圖畫圖,直接寫出結(jié)果,不寫求解過程).
(3)若P為線段BD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-2(x-5)2+3的頂點(diǎn)坐標(biāo)是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)的圖像向左平移2個(gè)單位再向下平移4個(gè)單位,所得函數(shù)表達(dá)式是,我們來解釋一下其中的原因:不妨設(shè)平移前圖像上任意一點(diǎn)P經(jīng)過平移后得到點(diǎn)P’,且點(diǎn)P’的坐標(biāo)為,那么P’點(diǎn)反之向右平移2個(gè)單位,再向上平移4個(gè)單位得到點(diǎn),由于點(diǎn)P是二次函數(shù)的圖像上的點(diǎn),于是把點(diǎn)P(x+2,y+4)的坐標(biāo)代入再進(jìn)行整理就得到.類似的,我們對函數(shù)的圖像進(jìn)行平移:先向右平移1個(gè)單位,再向上平移3個(gè)單位,所得圖像的函數(shù)表達(dá)式為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù),當(dāng)x>2時(shí),y的值隨x值的增大而增大,則實(shí)數(shù)m的取值范圍是_ __.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(0,﹣2),與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,且﹣1<x1<0,1<x2<2,下列結(jié)論正確的是( 。
A.a(chǎn)<0 B.a(chǎn)﹣b+c<0
C.>1D.4ac﹣b2<﹣8a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-2(x-3)2+5的頂點(diǎn)坐標(biāo)是                .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)中的x與y的部分對應(yīng)值如下表:
x
﹣3
﹣2
﹣1
0
1
2
3
4
5
y
12
5
0
﹣3
﹣4
﹣3
0
5
12
給出了結(jié)論:
(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
(2)當(dāng)時(shí),y<0;
(3)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)    B.2個(gè)    C. 3個(gè)       D.0個(gè)

查看答案和解析>>

同步練習(xí)冊答案