如圖,PD⊥AB于D,PE⊥AF于E,且PD=PE,則△APD與△APE全等的理由是
[     ]
A.SSS
B.ASA
C.SSA
D.HL
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,G是
AB
上一點,且
BG
=
1
3
AB
,連接AG交PD于F,連接BF,若PD=6
3
,tan∠BFE=3
3

求:(1)∠C的度數(shù);
(2)QH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,Rt△ABC中,∠C=90°,∠A=30°,P為AC邊上一點,PC=2,∠PBC=30°.
(1)若PD⊥AB于D,在圖中畫出線段PD;
(2)點P到斜邊AB的距離等于
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為
4
4
,周長
8
8

(2)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明.
(3)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡市浠水縣朱店中學(xué)九年級(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為______,周長______.
(2)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明.
(3)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案