精英家教網 > 初中數學 > 題目詳情

【題目】如圖,OA是⊙O的半徑,BC是⊙O的弦,且BC⊥OA,過BC的延長線上一點D作⊙O的切線DE,切點為E,連接AB,BE,若∠BDE=52°,則∠ABE的度數是(
A.52°
B.58°
C.60°
D.64°

【答案】D
【解析】解:如圖連接OE,設OA交BC于H.
∵DE是⊙O的切線,
∴OE⊥DE,
∴∠OED=90°,
∵BC⊥OA于H,
∴∠OHD=90°,
∴∠EOH=360°﹣∠OHD﹣∠D﹣∠OED=360°﹣90°﹣52°﹣90°=128°,
∴∠ABE= ∠AOE=64°,
故選D.
【考點精析】解答此題的關鍵在于理解垂徑定理的相關知識,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,以及對切線的性質定理的理解,了解切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知長方形OABC中,動點P(0,3)出發(fā),沿所示的方向運動,每當碰到長方形的邊時反彈,反彈時反射角等于入射角,第一次碰到長方形的邊時的位置為P1(3,0),則第二次碰到長方形的邊上一點P2的坐標為________.當點P2018次碰到長方形的邊時,點P2018的坐標是_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB10,AC2BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據勾股定理得:BD==8,CD==2,

此時BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據勾股定理得:BD==8,CD==2,

此時BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
束】
12

【題目】在平面直角坐標系中,已知一次函數y=2x+1的圖象經過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】三角形ABC為等腰直角三角形,其中∠A=90°,BC長為6.

(1)建立適當的直角坐標系,并寫出各個頂點的坐標.

(2)(1)中各頂點的橫坐標不變,將縱坐標都乘-1,與原圖案相比,所得的圖案有什么變化?

(3)(1)中各頂點的橫坐標都乘-2,縱坐標保持不變,與原圖案相比,所得的圖案有什么變化?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AB邊的中點,F在AD邊上,M,N分別是CD,BC邊上的動點,若AB=AF=2,AD=3,則四邊形EFMN周長的最小值是(
A.2+
B.2 +2
C.5+
D.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD和正方形A1B1C1D1的對角線(正方形相對頂點之間所連的線段)BDB1D1都在x軸上,O,O1分別為正方形ABCD和正方形A1B1C1D1的中心(正方形對角線的交點稱為正方形的中心),O為平面直角坐標系的原點.OD=3,O1D1=2.

(1)如果O1x軸上平移時,正方形A1B1C1D1也隨之平移,其形狀、大小沒有改變,當中心O1x軸上平移到兩個正方形只有一個公共點時,求此時正方形A1B1C1D1各頂點的坐標;

(2)如果Ox軸上平移時,正方形ABCD也隨之平移,其形狀、大小沒有改變,當中心Ox軸上平移到兩個正方形公共部分的面積為2個平方單位時,求此時正方形ABCD各頂點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A的坐標為(1,2),AB⊥x軸于點B,將△AOB繞點A逆時針旋轉90°得到△ACD,雙曲線y= (x>0)恰好經過點C,交AD于點E,則點E的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程:

(1)4x+3(2x﹣3)=12﹣(x﹣4)

(2)

(3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線ACBD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是(  )

A. OA=OCADBC B. ABC=ADC,ADBC

C. AB=DCAD=BC D. ABD=ADB,BAO=DCO

查看答案和解析>>

同步練習冊答案