【題目】為了支持大學(xué)生創(chuàng)業(yè),某市政府出臺(tái)了一項(xiàng)優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊(cè)了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營(yíng)的利潤(rùn),逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費(fèi)用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價(jià)x(元)萬件之間的函數(shù)關(guān)系如圖所示.
(1)求該網(wǎng)店每月利潤(rùn)w(萬元)與銷售單價(jià)x(元)之間的函數(shù)表達(dá)式;
(2)小王自網(wǎng)店開業(yè)起,最快在第幾個(gè)月可還清10萬元的無息貸款?
【答案】(1)當(dāng)4≤x≤6時(shí),w1=﹣x2+12x﹣35,當(dāng)6≤x≤8時(shí),w2=﹣x2+7x﹣23;(2)最快在第7個(gè)月可還清10萬元的無息貸款.
【解析】(1)y(萬件)與銷售單價(jià)x是分段函數(shù),根據(jù)待定系數(shù)法分別求直線AB和BC的解析式,又分兩種情況,根據(jù)利潤(rùn)=(售價(jià)﹣成本)×銷售量﹣費(fèi)用,得結(jié)論;
(2)分別計(jì)算兩個(gè)利潤(rùn)的最大值,比較可得出利潤(rùn)的最大值,最后計(jì)算時(shí)間即可求解.
(1)設(shè)直線AB的解析式為:y=kx+b,
代入A(4,4),B(6,2)得:,
解得:,
∴直線AB的解析式為:y=﹣x+8,
同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,
∵工資及其他費(fèi)作為:0.4×5+1=3萬元,
∴當(dāng)4≤x≤6時(shí),w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,
當(dāng)6≤x≤8時(shí),w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;
(2)當(dāng)4≤x≤6時(shí),
w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
∴當(dāng)x=6時(shí),w1取最大值是1,
當(dāng)6≤x≤8時(shí),
w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
當(dāng)x=7時(shí),w2取最大值是1.5,
∴==6,
即最快在第7個(gè)月可還清10萬元的無息貸款.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一簡(jiǎn)易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長(zhǎng)為19m),另外三邊利用學(xué),F(xiàn)有總長(zhǎng)38m的鐵欄圍成。
(1)若圍成的面積為180m2,試求出自行車車棚的長(zhǎng)和寬;
(2)能圍成的面積為200m2自行車車棚嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)拿了兩塊 45°的三角尺△MNK、△ACB 做了一個(gè)探究活 動(dòng):將△MNK 的直角頂點(diǎn) M 放在△ABC 的斜邊 AB 的中點(diǎn)處,設(shè) AC=BC=a.
(1)如圖 1,兩個(gè)三角尺的重疊部分為△ACM,則重疊部分的面積為 ,周長(zhǎng)為 ;
(2)將圖 1 中的△MNK 繞頂點(diǎn) M 逆時(shí)針旋轉(zhuǎn) 45°,得到圖 2,此時(shí)重疊部分 的面積為 ,周長(zhǎng)為 ;
(3)如果將△MNK 繞 M 旋轉(zhuǎn)到不同于圖 1,圖 2 的位置,如圖 3 所示,猜想此 時(shí)重疊部分的面積為多少?并試著加以驗(yàn)證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的其中兩個(gè)頂點(diǎn)分別為:A(-4,1)、B(-2,4).
(1)請(qǐng)根據(jù)題意,在圖中建立平面直角坐標(biāo)系,并寫出點(diǎn)C的坐標(biāo);
(2)若△ABC每個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別乘-1,順次連接這些點(diǎn),得到△A1B1C1,畫出△A1B1C1,判斷△A1B1C1與△ABC有怎樣的位置關(guān)系?并寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與二次函數(shù)的圖像交于點(diǎn)A、O,(O是坐標(biāo)原點(diǎn)),點(diǎn)P為二次函數(shù)圖像的頂點(diǎn),OA=,AP的中點(diǎn)為B.
(1)求二次函數(shù)的解析式;
(2)求線段OB的長(zhǎng);
(3)若射線OB上存在點(diǎn)Q,使得△AOQ與△AOP相似,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個(gè)“”型的工件(工件厚度忽略不計(jì)),如圖示,其中為20,為60,,,求該工件如圖擺放時(shí)的高度(即到的距離).
(結(jié)果精確到0.1,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
亮亮服裝店銷售一種服裝,若按原價(jià)銷售,則每月銷售額為10000元;若按八五折銷售,則每月多賣出20件,且月銷售額還增加1900元.
(1)求每件服裝的原價(jià)是多少元?
(2)若這種服裝的進(jìn)價(jià)每件150元,求按八五折銷售的總利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線。
(1)以AB上一點(diǎn)O為圓心,AD為弦作⊙O;
(2)求證:BC為⊙O的切線;
(3)如果AC=3,tanB=,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),連接BE,CD相交于點(diǎn)O,連接DE,下列結(jié)論:①=;②=;③=;④=,其中正確的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com