【題目】如圖,四邊形ABCD中,AC平分∠DAB,ADC=ACB=90°,EAB的中點(diǎn),

(1)求證:AC2=ABAD;

(2)求證:△AFD∽△CFE.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

(1)根據(jù)兩組對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形相似證明即可;
(2)根據(jù)直角三角形的性質(zhì)得到CE=BE=AE,根據(jù)等腰三角形的性質(zhì)得到∠EAC=∠ECA,推出AD∥CE即可解決問(wèn)題;

(1)證明:∵AC平分∠DAB,

∴∠DAC=CAB,

∵∠ADC=ACB=90°,

∴△ADC∽△ACB,

AD:AC=AC:AB,

AC2=ABAD;

(2)證明:∵EAB的中點(diǎn),

CE=BE=AE,

∴∠EAC=ECA,

∵∠DAC=CAB,

∴∠DAC=ECA,

CEAD,

∴△AFD∽△CFE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90,∠C=30°,AB=6cm,BC=6cm,動(dòng)點(diǎn)P從點(diǎn)B開(kāi)始沿邊BA、AC向點(diǎn)C3cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向點(diǎn)Ccm/s的速度移動(dòng),動(dòng)點(diǎn)PQ同時(shí)出發(fā),到點(diǎn)C運(yùn)動(dòng)結(jié)束.設(shè)運(yùn)動(dòng)過(guò)程中△BPQ的面積為ycm2),運(yùn)動(dòng)時(shí)間為ts).

1)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A,t=   s);

2)請(qǐng)你用含t的式子表示y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長(zhǎng)度比梯子底端B離墻的距離大5.

1)這個(gè)云梯的底端B離墻多遠(yuǎn)?

2)如圖(2),如果梯子的頂端下滑了8mAC的長(zhǎng)),那么梯子的底部在水平方向右滑動(dòng)了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線F:y=x2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與x軸另一交點(diǎn)為(﹣,0).

(1)求拋物線F的解析式;

(2)如圖1,直線l:y=x+m(m>0)與拋物線F相交于點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)(點(diǎn)A在第二象限),求y2﹣y1的值(用含m的式子表示);

(3)在(2)中,若m=,設(shè)點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn),如圖2.

①判斷AA′B的形狀,并說(shuō)明理由;

②平面內(nèi)是否存在點(diǎn)P,使得以點(diǎn)A、B、A′、P為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABCAC=BC,ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點(diǎn)D,過(guò)D點(diǎn)作⊙O的切線交AC于點(diǎn)E,連接B、D并延長(zhǎng)交AC于點(diǎn)F.則下列結(jié)論錯(cuò)誤的是( 。

A. ADE∽△ACO B. AOC∽△BFC

C. DEF∽△DOC D. CD2=DFDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將等腰△ABC沿對(duì)稱(chēng)軸折疊后,得到△ADC(△ADB),若,則稱(chēng)等腰△ABC長(zhǎng)月三角形”ABC.

1)結(jié)合題目情境,請(qǐng)你判斷長(zhǎng)月三角形一定會(huì)是______三角形.

2)如圖2,C為線段AB上一點(diǎn),分別以ACBC為邊作長(zhǎng)月三角形”ACD長(zhǎng)月三角形”BCE,連接AEBD交于點(diǎn)O,AECD交于點(diǎn)P,CEBD交于點(diǎn)M.

①求證:

②求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1.在△ABC中,B=60°,DAC和∠ACE的角平分線交于點(diǎn)O,則∠O=     °,

2)如圖2,若∠B,其他條件與(1)相同,請(qǐng)用含α的代數(shù)式表示∠O的大;

3)如圖3,若∠B,,則∠P=     (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)軸上一動(dòng)點(diǎn),以為邊在的右側(cè)作等腰,,連接,則的最小值是 __________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等邊三角形,上的一個(gè)動(dòng)點(diǎn),延長(zhǎng)線上一點(diǎn),且

1)當(dāng)的中點(diǎn)時(shí),求證:

2)如圖1,若點(diǎn)在邊上,猜想線段之間的關(guān)系,并說(shuō)明理由.

3)如圖2,若點(diǎn)的延長(zhǎng)線上,(1)中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案